Tools for simulations

Event Generators at sqrt(s)=115 GeV

Opening the discussion ...

Sarah Porteboeuf-Houssais LPC Clermont-Ferrand

Physics at A Fixed Target ExpeRiment (AFTER) using the LHC beams 3-13 Febuary 2013 ECT Trento

- Event generators physics
- □ Why to use them?
- Questions raised by AFTER
- Non-exhaustive overview of event generators on the market
- Which one to do what?
- Conclusions

Event generators physics

Goal (dream ?) :

- > to reproduce entirely an event : particles in final state with all properties
- with all steps and physics features (soft, hard, interplay between the two, hydro?, all observables, ...)
- Should give access to exclusive observables
- > Different from a calculation/computation usually inclusive and for one observable (for example pT spectrum in pp-> $J/\Psi + X$)

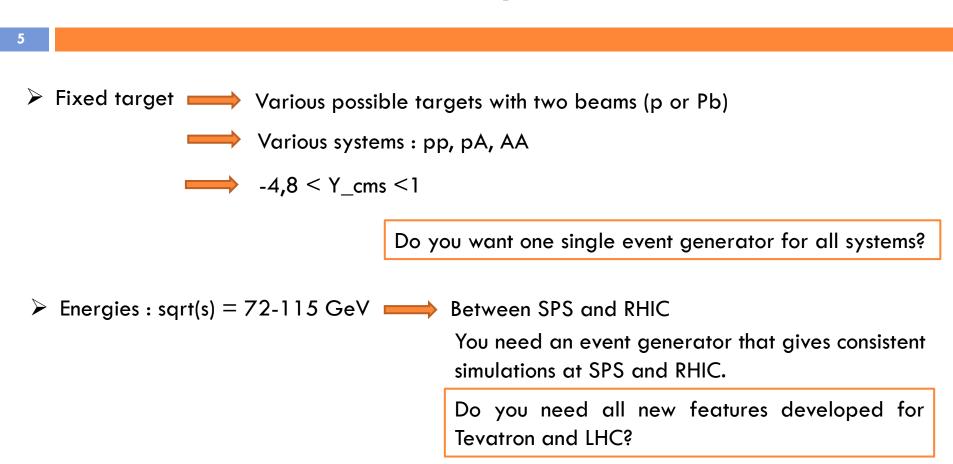
<u>Strategy :</u>

- Initial state
- Elementary interactions : soft, hard, both?
- Radiation
- Remnants
- Multiple interactions
- Underlying events
- Particle production (string picture?)

Why to use them?

4

Simulate events for detector/analysis purpose


- Generate events for corrections
- Test an analysis process on MC data prior to real data
- Test your comprehension of your detector (MC = Event generation + Geant simulation of detector)

For this, do you need a sophisticated baseline model of your event generator?

Model Comparison

- If you look at pure inclusive observables, maybe there is a model on the market that will be more adapted
- If you start looking at exclusive staff : particle correlations, soft vs. hard, ... Event generators trying to reproduce all aspects of the event could be of interest

Questions raised by AFTER

Observables : photons, jets, Quarkonia and open heavy flavors, identified soft particles

Various observables either soft and hard

Do you want one single event generator for all?

Non-exhaustive Overview of event generators on the market

pp event generators

> PYTHIA ➢ Herwig ∫

Based on pQCD approach : the hard interaction is the basis of the framework

EPOS
 Sherpa
 Based on Gribov-Regge approach, multiple interactions are the basis of the framework

Specialization, complement

- ALPGEN : include detailed multiple hard processes
- Jimmy
- Cascade : hard process with parton evolution

<u>pp, pA, AA</u>

- Hijing Based on PYTHIA, with emphasize on minijet, include nuclear shadowing
- AMPT Hijing for initial condition, add final state scattering to generate elliptic flow
- Picture of Elementary parton-parton interactions viewed as color flux tube extended to all EPOS system, with shadowing and hydro evolution
- Hydjet++ Hydro evolution (only AA?)

https://karman.physics.purdue.edu/OSCAR-old/models/list.html

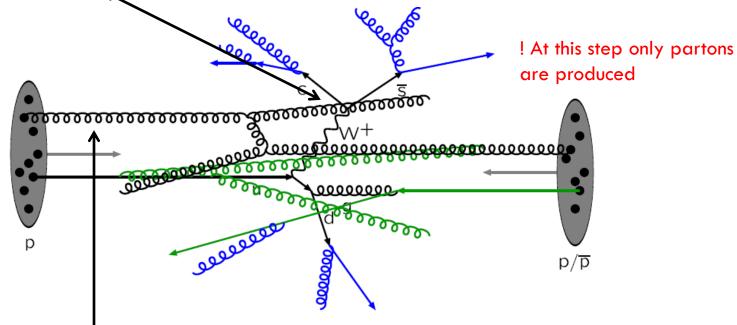
http://en.wikipedia.org/wiki/Event_generator

A completely biased selection

In the following :

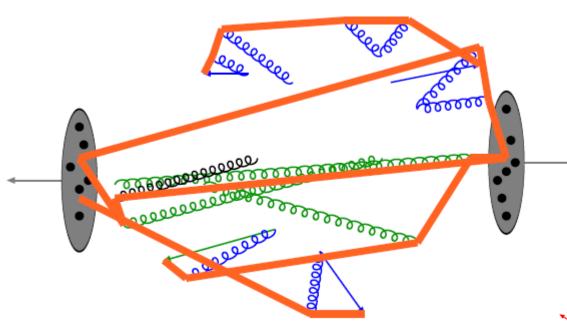
PYTHIA EPOS A bit of Hilling and AAAE

A bit of Hijing and AMPT


PYTHIA Physics : ref 6.4 Manual

http://arxiv.org/abs/hep-ph/0603175

8


1) The first hard interaction is the first step of event machinery :

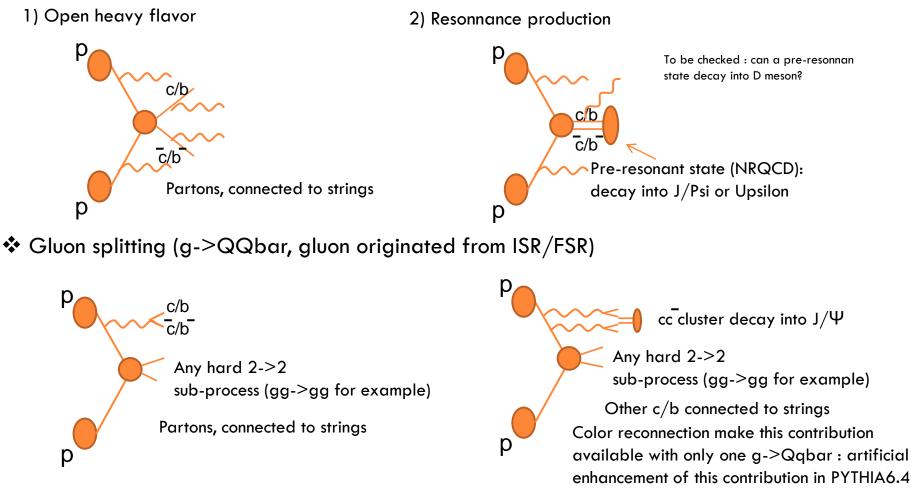
Computed in pQDC framework with factorization, possibility to select hard process : charm, bottom, jets, photon -> can tune this step

2) MPI (Multiple Parton Interaction) : other processes (soft or hard) can happen in parallel: PYTHIA model : the first hard interaction is particular, other are reconstructed afterward, ordered in hardness, in PYTHIA 6, only g,u,d,s available in other interaction, In PYTHIA 8 : second hard can include charm and bottom

PYTHIA Physics : ref 6.4 Manual

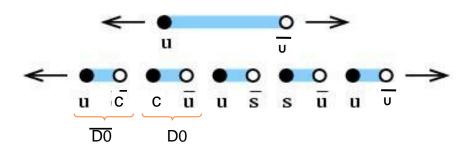
All produced partons (in hard process, ISR/FSR (Initial State Radiation/Final State Radiation), MPI, remnants, ...) are connected via strings : the LUND procedure,

Resonance let out of the machinery


Formed strings decay into hadrons

(fragmentation via qqbar pairs, pop-corn to produce baryons) qqbar : u,d,s,c (c is suppressed but available), heavier not implemented

How to produce heavy state in PYTHIA?


In the 2->2 hard sub-process : Hard production

(N.B : Cluster : small peace of string : decay directly into hadrons)

How to produce heavy state in PYTHIA?

String fragmentation

An event can still produce J/Psi and D mesons via string fragmentation

cc pair production suppressed as compare to u, d, s, but available : limit at high energy?

Higher state not available

How to tag the origin of heavy state?

> easy for resonance : direct information via the mother!

Due to final string procedure : difficult for open charm and open beauty : they all finally comes from strings

> For open charm and open beauty is there really a physical sense for differentiation?

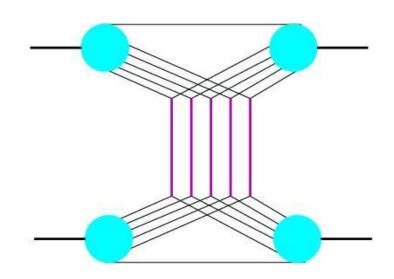
PYTHIA 8

http://arxiv.org/pdf/0710.3820.pdf http://home.thep.lu.se/~torbjorn/pythia8/worksheet8160.pdf

In C++

The actual developed code (PYTHIA 6 maintained, but not developed) MPI scenario : possibility of charm and bottom in the hard process of second hard interaction : user can play with this!!!

<u>PYTHIA +</u>


A bit of everything, even if the physics model is not perfect Extensively used, tuned, debugged, interfaced to other codes

<u> PYTHIA -</u>

Only pp

A bit of everything, even if the physics model is not perfect (eg. quarkonia) Not PYTHIA, but PYTHIA<u>S</u> : many many tunes, one single framework?

EPOS for pp

Parton-based Gribov-Regge Theory

Mixed approach between parton model and Gribov-Regge

Energy shared between all elementary interactions

Same formalism for cross section computation and particle production

Elementary interaction = \sum soft + Semi-hard

soft: parameterized

hard: parton model

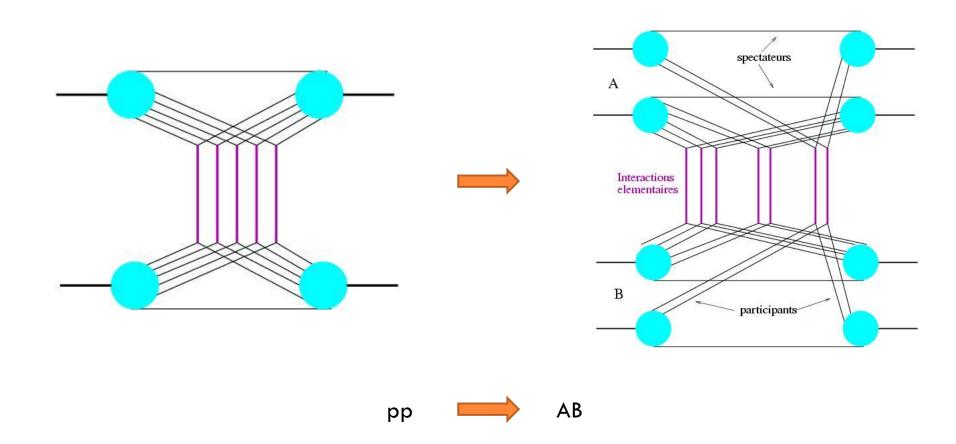
semi-hard: soft pre-evolution before the hard part

S. Ostapchenko, T. Pierog, K. Werner, H.J. Drescher, M. Haldik Phys. Rep. 350 (2001) EPOS theoretical framework

<u>Energy</u> conserving quantum mechanical multiple scattering approach based on :

- Partons, parton ladders, strings
- Off-shell remnants
- Splitting of parton ladder

EPOS for pp


Elementary scattering - flux tube

- □ Parton evolutions from the projectile and the target side towards the center (small x)
- Evolution is governed by an evolution equation, in the simplest case according to DGLAP.
- Parton ladder may be considered as a quasi-longitudinal color field, a so-called flux tube, conveniently treated as a relativistic string.
- □ Intermediate gluons are treated as kink singularities in the language of relativistic strings, providing a transversely moving portion of the object.
- flux tubes decay via the production of quarkantiquark pairs, creating in this way fragments
 which are identified with hadrons

15

Same framework extended

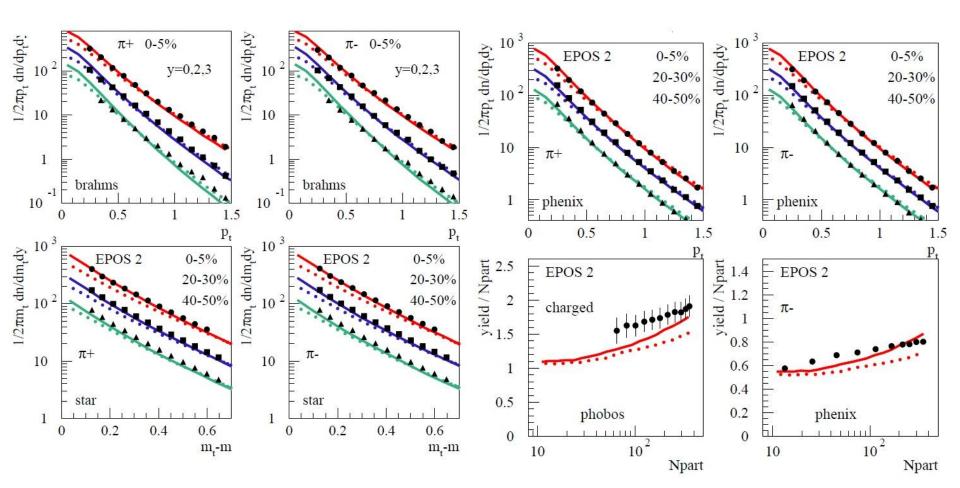
EPOS 2 : with hydro

In heavy ion collision / or very high energy pp collision :

- The usual procedure has to be modified, since the density of strings will be so high that they cannot possibly decay independently
- Some string pieces will constitute bulk matter, which expands as a fluid, others show up as jets

Event by event hydro-evolution

Initial condition given by flux tube picture


EPOS 2, not yet public, should be available by 2013!

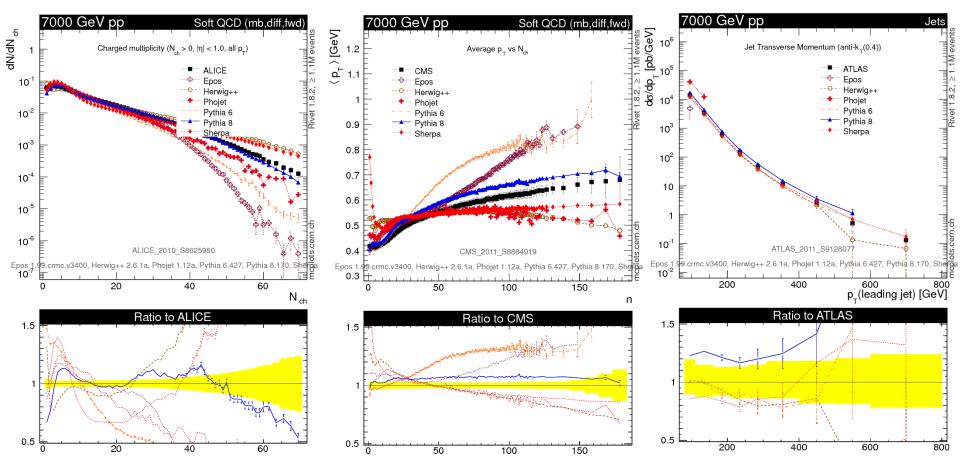
"Event-by-Event Simulation of the Three-Dimensional Hydrodynamic Evolution from Flux Tube Initial Conditions in Ultrarelativistic Heavy Ion Collisions" arXiv: 1004.0805

"Jets, Bulk Matter, and their Interaction in Heavy Ion Collisions at Several TeV." arXiv: 1203.5704

Pions at RHIC : AuAu, sqrt(s)=200 GeV

17

"Event-by-Event Simulation of the Three-Dimensional Hydrodynamic Evolution from Flux Tube Initial Conditions in Ultrarelativistic Heavy Ion Collisions" arXiv: 1004.0805


Comparison plots for pp data

18

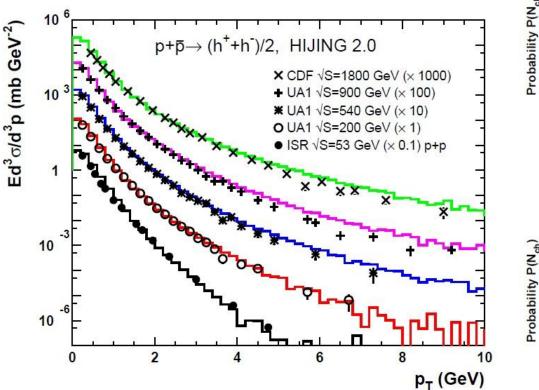
http://mcplots-dev.cern.ch/

MC versions and tuned used!

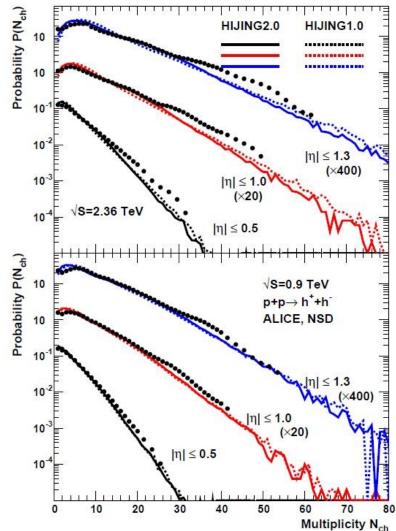
Online "repository of MC plots comparing High Energy Physics event generators to a wide variety of available experimental data, for tuning and reference purposes."

HIJING

(« HIJING 1.0: A Monte Carlo program for parton and particle production in high-energy hadronic and nuclear collisions. »
 nucl-th/9502021,LBL-34246. Comput.Phys.Commun. 83 (1994) 307 e-Print: nucl-th/9502021
 (« Hadron production in p+p, p+Pb, and Pb+Pb collisions with the HIJING 2.0 model at energies available at the CERN Large Hadron Collider »

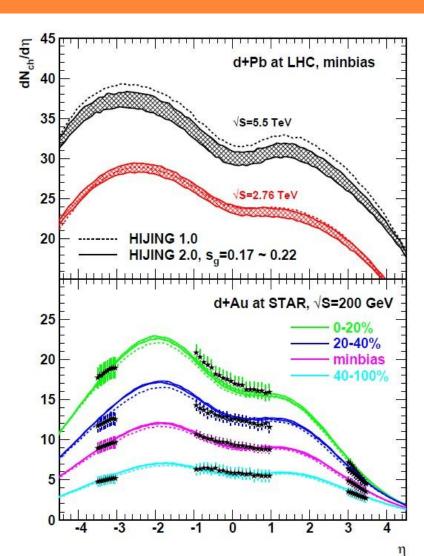

Published in Phys.Rev. C83 (2011) 014915 e-Print: arXiv:1008.1841 [hep-ph]

Main features of HIJING :


- Multiple mini-jet production according to an eikonal formalism for each nucleon-nucleon collision at given impact parameter b. Kinematic of each pair of jets + their ISR/FSR done by PYTHIA model
- Events without jet production (with pT>p0) and underlying soft parton interaction in event with jet production are modeled by excitation of quark-diquark strings with gluon kinks (FRITIOF and DPM model) + multiple low-pT exchange
- Nuclear modification of the PDF inside the nuclei with a set of impact-parameter dependent parton distribution functions, Version2 with more modern parameterized PDF
- □ Simple model for jet-quenching (jet-medium interaction in AA)

HIJING

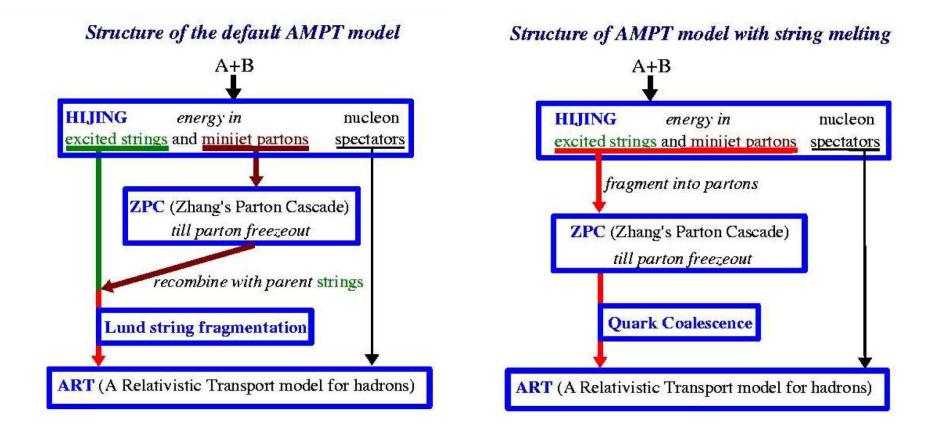
20



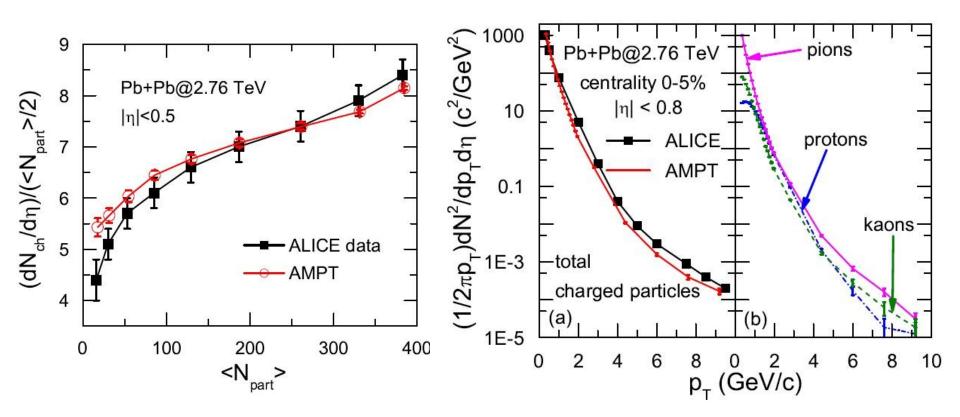
« Hadron production in p+p, p+Pb, and Pb+Pb collisions with the HIJING 2.0 model at energies available at the CERN Large Hadron Collider » Published in Phys.Rev. C83 (2011) 014915 e-Print: arXiv:1008.1841 [hep-ph]

HIJING

21



"Hadron production in p+p, p+Pb, and Pb+Pb collisions with the HIJING 2.0 model at energies available at the CERN Large Hadron Collider » Published in Phys.Rev. C83 (2011) 014915 e-Print: arXiv:1008.1841 [hep-ph] \ll Pb-Pb collisions at $\operatorname{S}_{sqrt}_{s_{NN}}=2.76\ TeV$ in a multiphase transport model » arXiv 1101.2231


« A Multi-phase transport model for relativistic heavy ion collisions. » Published in Phys.Rev. C72 (2005) 064901 e-Print: nucl-th/0411110

An hybrid model, 2 versions

AMPT

AMPT

« Pb-Pb collisions at \$\sqrt{s_{NN}}=2.76\$ TeV in a multiphase transport model » arXiv 1101.2231

Which one to do what?

24							
model	EPOS	ΡΥΤΗΙΑ	Hijing	AMPT			
systems	рр, рА, АА	рр	рр, рА, АА	pp?, pA, AA			
Baseline	Multiple Interaction	Hard process	PYTHIA 5,3? + minijet + nuclear structure	HIJING + transport model (ZPC parton cascade)			
MPI	Parton-based Gribov- Regge Theory	Reconstructed after the hard process. Interaction ordered in hardness. In the new model : color reconnection	modeled by exitation of quark-diquark strings with gluon links + multiple low-pT exchange				
Hard process	Hard and semi-hard ladder with soft pre- evolution u, d, s, g, gamma, c in progress	Based on inclusive cross section Almost everything, if not in the code, can couple with extra code	PYTHIA 5,3 🗖				
Quarkonia	In progress	Yes : model to be taken with caution.	Ś	Ś			

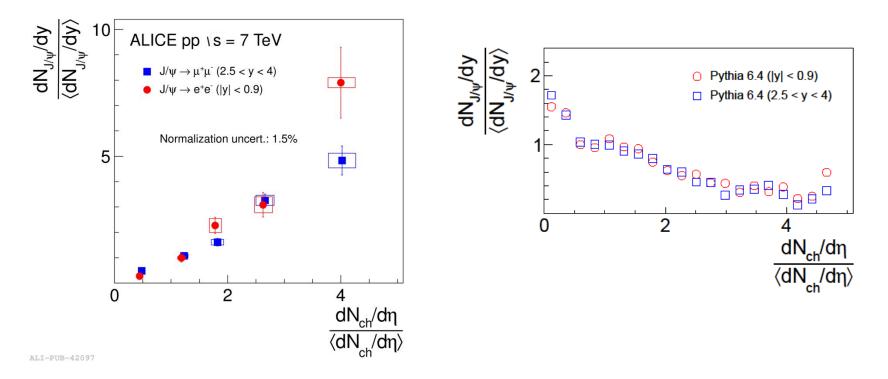
Which one to do what?

25							
model	EPOS	PYTHIA	Hijing	AMPT			
Initial and Final state radiation	Iterative procedure from partons in hadrons to 2->2 process	A posteriori reconstruction Available for MPI in the new model (6.4)	PYTHIA 5,3				
Collectivity	Yes, available with string density, eg. for all systems if energy density high enough. Event by event hydro in EPOS2	No	Simple model for jet- quenching (jet-medium interaction in AA)	transport model			
Hadroniza tion	String model with area law, diquark for baryon production	String model with fragmentation function, popcorn for baryon production	PYTHIA 5,3				
Remnant	Yes Off-shell treatment	Yes	PYTHIA 5,3 💻				
Connection between hard processes and MPI	Total by construction : several ladders soft or hard, energy conservation and color connection	With color reconnection (6,4), final state effect	modeled by excitation of quark-diquark strings with gluon links + multiple low-pT exchange	Ş			

Conclusions

The first question you should ask yourself : what do I want to do with my event generator?

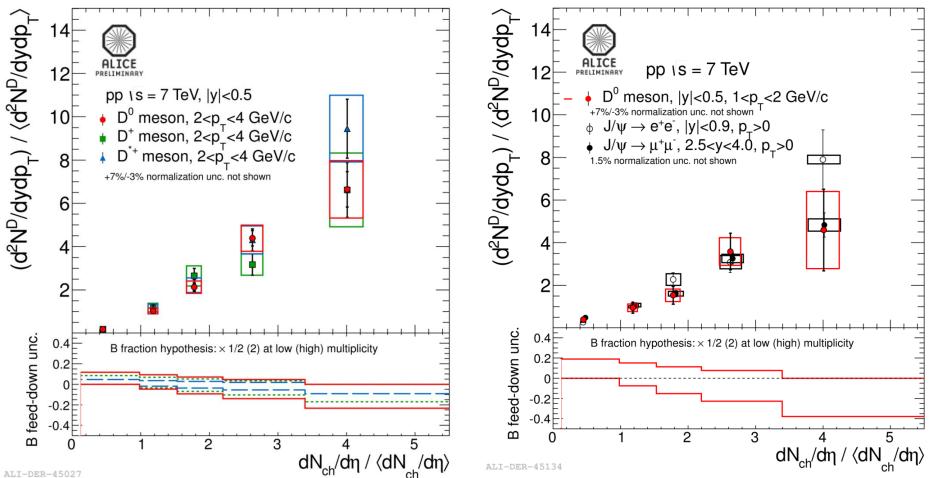
- In pp at sqrt(s)=115 GeV, do you need all theory development needed for tevatron and LHC?
- If your goal is to study pA and AA : do you gain to have one single event generator (one physical framework and computing framework) for all systems and energies ?
- Do you gain to have one single event generator for all observables ?
- For quarkonia : at present moment there isn't a full event generator for pp, pA, AA with quarkonia implemented in a single framework (see Smbat and Cynthia's work)
- The field is evolving quickly, improved MC will certainly be available when AFTER will be in operation, stay tuned


There isn't one easy answer, it depends on your preferences!

Backup

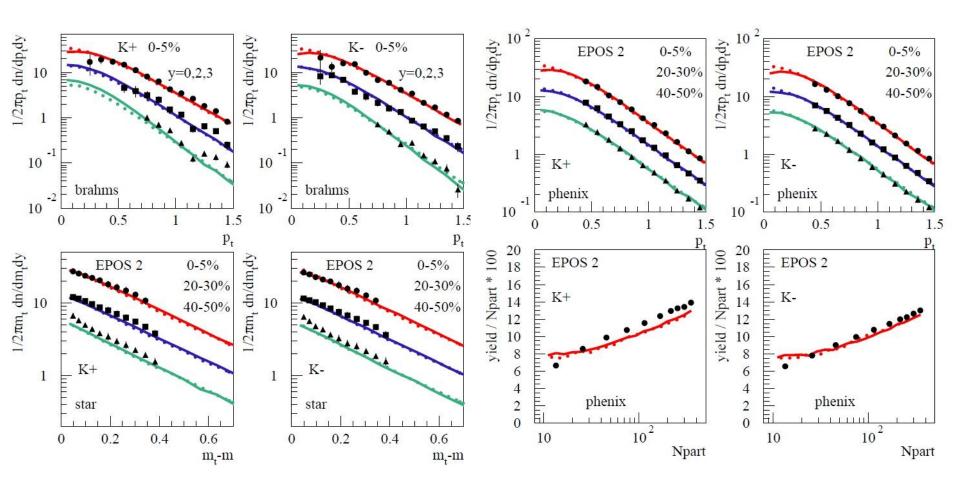
J/Psi vs. mult in pp @ 7 TeV

28


At LHC : looking at more exclusive observables in pp@ 7 Tev Phys.Lett. B712, 165-175, 2012 / ArXiv:1202.2816

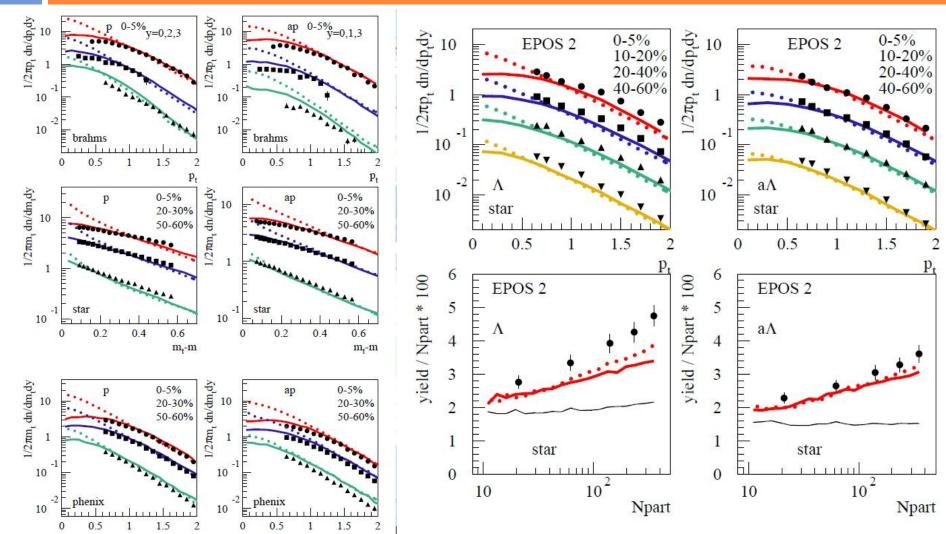
Will you look with AFTER at such observables, or quarkonia+correlations?

D vs. mult in pp @ 7 TeV


29

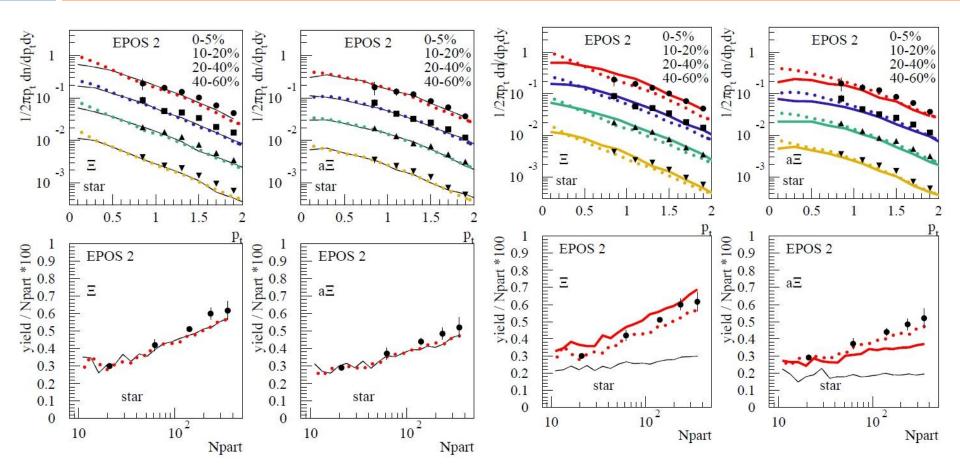
ALI-DER-45027

Kaons at RHIC : AuAu, sqrt(s)=200 GeV


30

"Event-by-Event Simulation of the Three-Dimensional Hydrodynamic Evolution from Flux Tube Initial Conditions in Ultrarelativistic Heavy Ion Collisions" arXiv: 1004.0805

Protons and lambda at RHIC : AuAu, sqrt(s)=200 GeV


31

"Event-by-Event Simulation of the Three-Dimensional Hydrodynamic Evolution from Flux Tube Initial Conditions in Ultrarelativistic Heavy Ion Collisions" arXiv: 1004.0805

Xi and Omega at RHIC : AuAu, sqrt(s)=200 GeV

32

"Event-by-Event Simulation of the Three-Dimensional Hydrodynamic Evolution from Flux Tube Initial Conditions in Ultrarelativistic Heavy Ion Collisions" arXiv: 1004.0805

Many other variables and energies available in literature