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A bit of kinematics with the 7 TeV proton beam

Generalities

pp or pA collisions with a 7 TeV p+ on a fixed target occur at a CM energy
√

s =
√

2mNEp ' 115 GeV

In a symmetric collider mode,
√

s = 2Ep, i.e. much larger

Benefit of the fixed target mode : boost: γLab
CM =

√
s

2mp
' 60

Consider a photon emitted at 90◦ w.r.t. the z-axis (beam) in the CM:
(pz,CM = 0, E γ

CM = pT )(
ELab
pz,Lab

)
=

(
γ γβ

γβ γ

)(
pT
0

)
pz,Lab ' 60pT ! [A 67 MeV γ from a π0 at rest in the CM can easily be detected.]

Angle in the Lab. frame: tanθ = pT
pz,Lab

= 1
γβ
⇒ θ ' 1◦.
[Rapidity shift: ∆y = tanh−1β ' 4.8]

The entire forward CM hemisphere (yCM > 0) within 0◦ ≤ θLab ≤ 1◦

[yCM = 0⇒ yLab ' 4.8]

Good thing: small forward detector ≡ large acceptance
Bad thing: high multiplicity⇒ absorber⇒ physics limitation
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The target rapidity region: the uncharted territory

Backward physics ?
√

s is large, let’s adopt a different strategy and look at larger angles
· particles with sufficient pT to be detected
· heavy particles whose decay product have enough pT to be detected

[not very heavy in fact: J/ψ → µµ or D→ K π are fine for current detectors]

Advantages:
· reduced multiplicities at large(r) angles
· access to partons with momentum fraction x → 1 in the target
· last, but not least, no geometrical constrain (e.g. beam pipe) at θCM ' 180◦

x1 ≃ x2

Hadron center-of-mass system Target rest frame

∼ 1◦

x1
x2

x1 x2
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The target rapidity region: the uncharted territory

First systematic access to the target-rapidity region
(xF →−1)

F
x

-0.4 -0.2 0 0.2 0.4 0.6 0.8

α

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1
HERAB 920 GeV

E866 800 GeV

NA50 450 GeV

NA60 400 GeV

NA3 200 GeV

NA60 158 GeV

J/ψ suppression in pA collisions

?
xF systematically studied at fixed target experiments up to +1
Hera-B was the only one to really explore xF < 0, up to -0.3
PHENIX @ RHIC: −0.1 < xF < 0.1 [ could be wider with Υ, but low stat.]
CMS/ATLAS: |xF |< 5 ·10−3; LHCb: 5 ·10−3 < xF < 4 ·10−2

If we measure Υ(bb̄) at ycms '−2.5 ⇒ xF ' 2mΥ√
s sinh(ycms)'−1
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A bit of kinematics with the 2.76 TeV lead-ion beam

The lead-ion beam

Design LHC lead-beam energy: 2.76 TeV per nucleon

In the fixed target mode, PbA collisions at
√

sNN ' 72 GeV
Half way between BNL-RHIC (AuAu, CuCu @ 200 GeV) and
CERN-SPS (PbPb @ 17.2 GeV)
Example of motivations:
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The beam extraction

The beam extraction

H The LHC beam may be extracted using “Strong crystalline field”
without any decrease in performance of the LHC !

E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31, Rev. Mod. Phys. 77 (2005) 1131

H Illustration for collimation

H Tests will be performed on the LHC beam:
LUA9 proposal approved by the LHCC
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The beam extraction

The beam extraction

Inter-crystalline fields are huge

The channeling efficiency is high for a deflection of a few mrad
One can extract a significant part of the beam loss (109p+s−1)
Simple and robust way to extract the most energetic beam ever:
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Luminosities

Luminosities

Expected proton flux Φbeam = 5×108 p+s−1

Instantaneous Luminosity:

L = Φbeam×Ntarget = Nbeam× (ρ× `×NA)/A

[ `: target thickness (for instance 1cm)]

Integrated luminosity:
∫

dtL over 107 s for p+ and 106 for Pb
[the so-called LHC years]

Target ρ (g.cm-3) A L  (µb-1.s-1) òL (pb-1.yr-1)

Sol. H
2

0.09 1 26 260

Liq. H
2

0.07 1 20 200

Liq. D
2

0.16 2 24 240

Be 1.85 9 62 620

Cu 8.96 64 42 420

W 19.1 185 31 310

Pb 11.35 207 16 160
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Luminosities

Luminosities

1 meter-long liquid H2 & D2 targets can be used (see NA51, . . . )

This gives: LH2/D2 ' 20 fb−1y−1

Recycling the LHC beam loss, one gets

a luminosity comparable to the LHC itself !

PHENIX lumi in their decadal plan
· Run14pp 12 pb−1 @

√
sNN = 200 GeV

· Run14dAu 0.15 pb−1 @
√

sNN = 200 GeV

AFTER vs PHENIX@RHIC:
3 orders of magnitude larger

Lumi for Pb runs in the backup slides
(roughly 10 times that planned for the LHC)
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Luminosities

Luminosities
Instantaneous Luminosity:

L = Φbeam×Ntarget = Nbeam× (ρ× `×NA)/A

Φbeam = 2×105 Pb s−1, ` = 1 cm (target thickness)

Integrated luminosity
∫

dtL = L ×106 s for Pb

Expected luminosities with 2×105Pb s−1 extracted (1cm-long target)
Target ρ (g.cm-3) A L  (mb-1.s-1)=òL (nb-1.yr-1)

Sol. H
2

0.09 1 11

Liq. H
2

0.07 1 8

Liq. D
2

0.16 2 10

Be 1.85 9 25

Cu 8.96 64 17

W 19.1 185 13

Pb 11.35 207 7

Planned lumi for PHENIX Run15AuAu 2.8 nb−1 (0.13 nb−1 at 62 GeV)

Nominal LHC lumi for PbPb 0.5 nb−1
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Luminosities

A few figures on the (extracted) proton beam

Beam loss: 109 p+s−1

Extracted intensity: 5×108 p+s−1 (1/2 the beam loss) E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31

Number of p+: 2808 bunches of 1.15×1011p+ = 3.2×1014p+

Revolution frequency: Each bunch passes the extraction point at a rate of
3.105 km.s−1/27 km' 11 kHz

Extracted “mini” bunches:
the crystal sees 2808×11000 s−1 ' 3.107 bunches s−1

one extracts 5.108/3.107 ' 16p+ from each bunch at each pass
Provided that the probability of interaction with the target is below 5%,

no pile-up...Extraction over a 10h fill:

5×108p+×3600 s h−1×10 h = 1.8×1013p+ fill−1

This means 1.8×1013/3.2×1014 ' 5.6% of the p+ in the beam
These protons are lost anyway !

similar figures for the Pb-beam extraction
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Heavy-flavour observatory in pp/pd

AFTER, among other things, a quarkonium observatory in pp

Interpolating the world data set:
Target òL (fb-1.yr-1) N(J/Ψ) yr-1

= ALBσΨ

N(ϒ) yr-1

  =ALBσϒ

1 m Liq. H
2

20 4.0 108 8.0 105

1 m Liq. D
2

24 9.6 108 1.9 106

LHC pp 14 Tev
(low pT)

0.05 (ALICE)
 2 LHCb

3.6 107

1.4 109

1.8 105

7.2 106

RHIC pp 200GeV 1.2 10-2 4.8 105 1.2 103

1000 times higher than at RHIC;comparable to ALICE/LHCb at the LHC

Numbers are for only one unit of rapidity about 0

Unique access in the backward region

Probe of the (very) large x in the target
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Heavy-flavour observatory in pA

AFTER: also a quarkonium observatory in pA
Target A òL (fb-1.yr-1) N(J/Ψ) yr-1

= ALBσΨ

N(ϒ) yr-1

  =ALBσϒ

1cm Be 9 0.62 1.1 108 2.2 105

1cm Cu 64 0.42 5.3 108 1.1 106

1cm W 185 0.31 1.1 109 2.3 106

1cm Pb 207 0.16 6.7 108 1.3 106

LHC pPb 8.8 TeV 207 10-4 1.0 107 7.5 104

RHIC dAu 200GeV 198 1.5 10-4 2.4 106 5.9 103

RHIC dAu 62GeV 198 3.8 10-6 1.2 104 18

In principle, one can get 300 times more J/ψ –not counting the likely
wider y coverage– than at RHIC, allowing for

χc measurement in pA via J/ψ + γ (extending Hera-B studies)
Polarisation measurement as the centrality, y or PT
Ratio ψ ′ over direct J/ψ measurement in pA
not to mention ratio with open charm, Drell-Yan, etc ...
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Heavy-flavour observatory in PbA

AFTER: also an heavy-flavour observatory in PbA

Luminosities and yields with the extracted 2.76 TeV Pb beam
(
√

sNN = 72 GeV)
Target A.B òL (nb-1.yr-1) N(J/Ψ) yr-1

= ABLBσΨ

N(ϒ) yr-1

  =ABLBσϒ

1 m Liq. H
2

207.1 800 3.4 106 6.9 103

1cm Be 207.9 25 9.1 105 1.9 103

1cm Cu 207.64 17 4.3 106 0.9 103

1cm W 207.185 13 9.7 106 1.9 104

1cm Pb 207.207 7 5.7 106 1.1 104

LHC PbPb 5.5 TeV 207.207 0.5 7.3 106 3.6 104

RHIC AuAu 200GeV 198.198 2.8 4.4 106 1.1 104

RHIC AuAu 62GeV 198.198 0.13 4.0 104 61

Yields similar to those of RHIC at 200 GeV,
100 times those of RHIC at 62 GeV
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Back to the future ...

LHB
Our idea is not completely new

B-factories: 1 ab−1 means 109BB̄ pairs
For LHCb, typically 1 fb−1 means ' 2×1011BB̄ pairs at 14 TeV
LHB turned down in favour of LHCb mainly because of the fear of a

premature degradation of the bent crystal due to radiation damages.
Nowadays, degradation is known to be ' 6% per 1020 particles/cm2

1020 particles/cm2 : one year of operation for realistic conditions
After a year, one simply moves the crystal by less than one mm ...
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Conclusion

Conclusion

Both p and Pb LHC beams can be extracted without disturbing
the other experiments

Extracting a few per cent of the beam→ 5×108 protons per sec
This allows for high luminosity pp, pA and PbA collisions at√

s = 115 GeV and
√

sNN = 72 GeV
Example: precision quarkonium studies taking advantage of

high luminosity (reach in y , PT , small BR channels)
target versatility (nuclear effects, strongly limited at colliders)
modern detection techniques (e.g. γ detection with high multiplicity)

A wealth of possible measurements:
DY, Open b/c, jet correlation, UPC... (not mentioning secondary beams)

Planned LHC long shutdown (< 2020 ?) could be used to install
the extraction system

Very good complementarity with electron-ion programs
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