Parton distribution functions, isolated-photons and AFTER

Physics at fixed-target energies using the LHC beams ECT*, Trento, 5th February 2013

David d'Enterria CERN

Outline

- Introduction:
 - Prompt & isolated photon production in hadronic collisions
- **Isolated-***γ* **at colliders** (RHIC, SppS, Tevatron, LHC):
 - World $d\sigma_{\gamma}/dp_{T}$ data: 35 measurements, (x,Q²) map, x_{T} scaling
 - PDF reweighting setup: JETPHOX NLO + NNPDF2.1 (100 replicas)
 - Quantitative impact on gluon PDF
 - Other LHC measurements: isolated- γ +jet in p-p, isolated- γ in Pb-Pb
- **Isolated-***γ* predictions for AFTER:
 - (x,Q^2) map, uncertainties in p and Pb PDFs at high-x
 - NLO predictions for p-p and Pb-Pb: uncertainties, expected yields.
- Summary

Prompt-γ production in hadronic collisions

Leading partonic production processes in p-p, p-p collisions :

+ parton-to-photon fragmentation:

Relative subprocess fractions (NLO): Important fragmentation contribution

Prompt-γ production in hadronic collisions

Long-standing disagreement between NLO pQCD & <u>fixed-target inclusive</u> photon data (p-p, p-A @ √s~20-40 GeV):

- Not solved by N^{2,3}LL soft-gluon threshold & recoil resummations: Low p_T dominated by intrinsic-k_T ? parton-to-γ FF ? nuclear target effects ?
- "Conclusion": Photons removed from global PDF fits (used to constrain high-x gluon) since MRST99 !

AFTER-LHC, ECT* Trento, Feb'13

Isolated-γ production in hadronic collisions

Leading partonic production processes in p-p, p- \overline{p} collisions :

Isolation cuts (e.g. R=0.4, E_{T,had}<5 GeV)

Quark-gluon Compton scattering dominates now (~80%) x-sections:

Redeeming γ data for PDF global fits

Does NLO reproduce the existing photon data ... ? Yes !

- Applying isolation cuts: Removing most fragmentation γ's
 Moving to collider energies: Larger pQCD scales
- Are they useful for PDF constraints ... ? Yes !
 - ✓ 35+ meas., 400+ data points = direct access to gluon PDF !
 [xg(x,Q²) only indirectly constrained by F₂ scaling violations &
 directly at large-x by Tevatron jets]
- **How** can one quantify the inclusion of isolated- γ into PDF fits ?
- (1) Including γ data & full refitting all data-sets: (very) slow NLO code ...
 (2) "A posteriori" inclusion via fastNLO or ApplGrid: not implemented yet
 (3) Using NNPDF Bayesian reweighting technique

Isolated-photons at p-p colliders

(x,Q²) map of collider isolated-γ datasets

[D.d'E & J.Rojo, NPB 860 (2012) 311]

Kinematical range of LHC, Tevatron, SppS & RHIC γ_{isol} data:

Direct sensitivity to gluon PDF over wide (x,Q²) domain

[xG(x,Q²) only constrained indirectly by DIS & directly by p-p jets at high-x]

Isolated-γ collider world-data (I)

35 meas. (~400 data points) at LHC/Tevatron/SppS/RHIC & increasing ...

	System	Collab./experiment	√s (TeV)	$ y_{\gamma} $	$E_{\rm T}^{\gamma}$ range	x	Data	Isolation radius,
		(conider) [Ref.]	(Iev)	Tange	(Gev)	Tange 2	points	had. energy
	p-p	ATLAS (LHC) [34]	7.	<0.6	15-100	$5 \times 10^{-3} - 0.05$	8	$R = 0.4, E_h < 5 \text{ GeV}$
	p-p	ATLAS (LHC) [34]	7.	0.6-1.37	15-100	$3 \times 10^{-3} - 0.1$	8	$R = 0.4, E_h < 5 \text{ GeV}$
LHC:	p-p	ATLAS (LHC) [34]	7.	1.52-1.81	15-100	$2 \times 10^{-3} - 0.1$	8	$R = 0.4, E_h < 5 \text{ GeV}$
	p-p	ATLAS (LHC) [35]	7.	<0.6	45-400	$5 \times 10^{-3} - 0.1$	8	$R = 0.4, E_h < 4 \text{ GeV}$
~125	p-p	ATLAS (LHC) [35]	7.	0.6-1.37	45-400	$5 \times 10^{-3} - 0.2$	8	$R = 0.4, E_h < 4 \text{ GeV}$
~135	p-p	ATLAS (LHC) [35]	7.	1.52-1.81	45-400	$2 \times 10^{-3} - 0.3$	8	$R = 0.4, E_h < 4 \text{ GeV}$
	p-p	ATLAS (LHC) [35]	7.	1.81-2.37	45-400	$2 \times 10^{-3} - 0.5$	8	$R = 0.4, E_h < 4 \text{ GeV}$
data	p-p	CMS (LHC) [37]	7.	<1.45	21-300	$5 \times 10^{-3} - 0.1$	11	$R = 0.4, E_h < 5 \text{ GeV}$
	p-p	CMS (LHC) [36]	7.	<0.9	25-400	$5 \times 10^{-3} - 0.2$	15	$R = 0.4, E_h < 5 \text{ GeV}$
points	p-p	CMS (LHC) [36]	7.	0.9-1.44	25-400	$2 \times 10^{-3} - 0.3$	15	$R = 0.4, E_h < 5 \text{ GeV}$
Ponno	p-p	CMS (LHC) [36]	7.	1.57-2.1	25-400	$10^{-3}-0.4$	15	$R = 0.4, E_h < 5 \text{ GeV}$
	p-p	CMS (LHC) [36]	7.	2.1-2.5	25-400	$10^{-3}-0.5$	15	$R = 0.4, E_h < 5 \text{ GeV}$
	p-p	CMS (LHC) [38]	2.76	<1.45	20-80	$10^{-3}-0.05$	6	$R = 0.4, E_h < 5 \text{ GeV}$
	n 5	CDE (Tavatron) [44]	1.06	<10	30 400	0.01.0.4	16	R = 0.4 s < 0.1
	p - p $p - \bar{p}$	D0 (Tevatron) [45]	1.96	<0.9	23_300	0.01_0.3	17	$R = 0.4, \epsilon_h < 0.1$ $R = 0.4, E_L < 2 \text{ GeV}$
	$p - \bar{p}$	CDF (Tevatron) [46]	1.90	<0.9	11-132	$5 \times 10^{-3} - 0.2$	17	$R = 0.4$ $E_h < 4$ GeV
	$p - \bar{p}$	CDF (Tevatron) [47]	1.8	<0.9	10-65	$5 \times 10^{-3} - 0.1$	17	$R = 0.4$ $E_L < 1$ GeV
	$p - \bar{p}$	CDF (Tevatron) [48]	1.8	<0.9	8-132	$5 \times 10^{-3} - 0.2$	16	$R = 0.7$ $E_{\rm h} < 1 {\rm GeV}$
	p - p	D0 (Tavatron) [40]	1.0	<0.9	10 140	$5 \times 10^{-3} 0.2$	0	$R = 0.1, E_h < 2 \text{ GeV}$
	p - p	D0 (Tevatron) [49]	1.0	16.25	10 140	10-3 0 4	0	$R = 0.4, E_h < 2 \text{ GeV}$
	p - p	D0 (Tevatron) [50]	1.0	<0.0	0 126	5 × 10-3 0.2	23	$R = 0.4, E_h < 2 \text{ GeV}$
	p = p	D0 (Tevatron) [50]	1.0	16.25	9-120	10-3 0 4	23	$R = 0.4, E_h < 2 \text{ GeV}$
	p = p $p = \bar{p}$	CDE (Tevatron) [30]	0.63	<0.9	8-38	0.01_0.2	7	$R = 0.4 E_h < 2 \text{ GeV}$
	p - p $p - \bar{p}$	D0 (Tevatron) [51]	0.63	<0.9	7-50	0.01-0.3	7	$R = 0.4$ $E_h < 4$ GeV
	$p - \bar{p}$	D0 (Tevatron) [51]	0.63	16-25	7-50	$10^{-3} - 0.4$	7	$R = 0.4$ $E_h < 2$ GeV
	PP	Do (retation) [51]	0.05	1.0 2.0	1 20	10 0.1		$R = 0.1, D_R < 2.001$
	$p-\bar{p}$	UA1 (SppS) [52]	0.63	<0.8	16-100	0.03-0.3	16	$R = 0.7, E_h < 2 \text{ GeV}$
	$p-\bar{p}$	UA1 (SppS) [52]	0.63	0.8-1.4	16-70	0.01-0.4	10	$R = 0.7, E_h < 2 \text{ GeV}$
	$p-\bar{p}$	UA1 (SppS) [52]	0.63	1.6-3.0	16-70	0.01-0.5	13	$R = 0.7, E_h < 2 \text{ GeV}$
	$p-\overline{p}$	UA2 (SppS) [53]	0.63	<0.76	14-92	0.03-0.3	13	$R = 0.265, \varepsilon_h < 0.25$
	p-p	UA2 (SppS) [54]	0.63	<0.76	12-83	0.03-0.3	14	$R = 0.25, E_h < 0.1 \text{ GeV}$
	p-p	UA2 (SppS) [54]	0.63	1.0-1.8	12-51	0.01-0.4	8	$R = 0.53, E_h < 2 \text{ GeV}$
	p-p	UAI (SppS) [52]	0.546	<0.8	10-51	0.03-0.2	0	$K = 0.7, E_h < 2 \text{ GeV}$
	p-p	UAT (SppS) [52]	0.546	0.8-1.4	16 28	0.02-0.4	5	$K = 0.7, E_h < 2 \text{ GeV}$
	p-p	UAI (SppS) [52]	0.540	1.0-3.0	10-38	0.01-0.5	2	$K = 0.7, E_h < 2 \text{ GeV}$
	p-p	PHENIX (RHIC) [55]	0.2	< 0.35	3-16	0.03-0.2	17	$R = 0.5, \varepsilon_h < 0.1$

Isolated-y collider world-data (II)

[D.d'E & R.Ichou, PoS EPS-HEP(2011) 291]

LHC/Tevatron/SppS/RHIC power-law p_T spectra within $\sim 4 - 400 \text{ GeV/c}$

 x_{τ} -scaled cross sections: power slope n=4.5

(pQCD tell-tale behaviour)

10/31

LHC γ_{isol} data: PDF flavours and x range

PDF reweighting via JETPHOX + NNPDF2.1

[D.d'E & J.Rojo, NPB 860 (2012) 311]

- JETPHOX 1.3.0 NLO pQCD code.
- NNPDF21_100.LHgrid (100 replicas) interfaced via LHAPDF5.8.5
- BFG-II parton-to-photon FFs (but suppressed by isolation cuts).
- All scales set to default: $\mu_R = \mu_F = \mu_{FF} = E_T^{\gamma}$
- Exp. kinematics+isolation cuts & p_T binnings for 30+ systems: 100 replicas direct-γ NLO: ~ 7h CPU / 1M evts (~5 days for 20 Mevts !) 100 replicas frag-γ NLO: ~10h CPU / 1M evts (~1 week for 20 Mevts !)

- NNPDF2.1 "reweighting technique": [R.D.Ball et al. NPB 849 (2011) 112]
- (1) Compute $d\sigma_{NLO}/dp_T$ for 100 replicas.

(2) $\chi^2 d\sigma_{EXP}/dp_T$ (syst. \oplus stat. uncert., no cov.matrices) vs $d\sigma_{NLO}/dp_T$ per replica.

(3) Obtain associated "weight" for each replica: $w_k = \frac{(\chi_k^2)^{\frac{1}{2}(n-1)}e^{-\frac{1}{2}\chi_k^2}}{\frac{1}{2}\sum_{k=1}^N (\chi_k^2)^{\frac{1}{2}(n-1)}e^{-\frac{1}{2}\chi_k^2}}$

(4) Obtain effective old+new number of replicas: $N_{\text{eff}} \equiv \exp\left\{\frac{1}{N}\sum_{k=1}^{N}w_k\ln(N/w_k)\right\}$

(5) Obtain reweighted PDF replicas: $\langle \mathcal{O} \rangle_{\text{new}} = \frac{1}{N} \sum_{k=1}^{N} w_k \mathcal{O}[f_k]$

NNPDF reweighting results

■ Typical distributions of replicas-weights for RHIC, SppS, LHC:

LHC rescaling-factors ~1. Experimental uncertainties well determined.

World γ_{isol} -data vs JETPHOX-NNPDF2.1

[D.d'E & J.Rojo, NPB 860 (2012) 311]

General good agreement of data and NLO.

• 6 systems (older measurements) with $\chi^2/ndf>3$ removed:

- large $P(\chi^2 | \alpha)$: syst. uncertainties underestimated in a few bins.
- Inconsistent with other measurements at same \sqrt{s} , η .

Effective number of replicas after reweighting (Shannon entropy):

\sqrt{s} (TeV)	0.2	0.546	0.630	1.8	1.96	2.76	7	LHC data are
$N_{ m eff}$	99.6	99	95	99.8	96	96	87	most constraining

LHC γ_{isol} data: Impact on gluon PDF

LHC-7 TeV isolated-photons have impact for 5·10⁻³ < x < 0.1, all Q²
 Gluon NLO PDF uncertainty reduced by up to ~20%
 Tevatron, SppS, RHIC measurements have negligible impact ...

AFTER-LHC, ECT* Trento, Feb'13

LHC γ_{isol} data: Impact on gluon PDF

[D.d'E & J.Rojo, NPB 860 (2012) 311]

LHC-7 TeV isolated-photons have impact for 5·10⁻³ < x < 0.1, all Q²
 Gluon NLO PDF uncertainty reduced by up to ~20%

γ_{isol} -jet at 7 TeV: data vs JETPHOX+NNPDF2.1

[Carminati,D.d'E,J.Rojo, et al. arXiv:1212.5511]

6 data sets: $|y^{\gamma}| < 1.37$, $p_{\tau}^{\text{photon}}, p_{\tau}^{\text{jet}} > 20 \text{ GeV}$

 $[|y^{jet}| < 1.2, 1.2 < |y^{jet}| < 2.8, 2.8 < |y^{jet}| < 4.4]$ for $y^{\gamma} \times y^{jet} < 0, y^{\gamma} \times y^{jet} > 0$

■ Good data-NLO agreement for the 6 data-sets ($\chi^2 \sim 1$) except for events with most fwd-jets: $\chi^2 \sim 2.6$ (physics ? experimental ?)

AFTER-LHC, ECT* Trento, Feb'13

γ_{isol} -jet at 7 TeV: Impact on gluon PDF

Effective # of replicas after reweighting (Shannon entropy): 98.7/100

[Carminati,D.d'E,J.Rojo, et al. arXiv:1212.5511]
$$N_{\text{eff}} \equiv \exp\left\{\frac{1}{N}\sum_{k=1}^{N} w_k \ln(N/w_k)\right\}$$

Very small impact on gluon density:

Gluon NLO PDF central PDF unchanged, uncertainty reduced by about ~5% for 0.05 < x < 0.3</p>

γ_{isol} -jet at 7 TeV with reduced errors: PDFs impact

[Carminati,D.d'E,J.Rojo, et al. arXiv:1212.5511]

γ -jet impact on PDFs with twice smaller exp. uncertainties:

Gluon NLO PDF uncertainty reduced by ~15% at high x
 Sea-quark NLO PDF uncertainty reduced by ~40% at low x

Nuclear PDFs: PbPb $\rightarrow \gamma_{iso}$ +X at 2.76 TeV vs NLO

Good agreement data – NLO for both pp & PbPb (all centralities).

p_⊤~ 20-80 GeV/c

p_⊤~ 60-200 GeV/c

David d'Enterria (CERN)

Nuclear PDFs: PbPb $\rightarrow \gamma_{iso}$ +X at 2.76 TeV vs NLO

- Good agreement data NLO for both pp & PbPb systems.
- R_{AA} = Pb-Pb/p-p~1 ⇒ small nuclear PDF modifications in probed x,Q²

21/31

Isolated-photons at AFTER

(x,Q²) map of AFTER isolated-γ

[D.d'E & J.Rojo, NPB 860 (2012) 311]

p-p kinematics at fixed-target LHC:

To access x > 0.3 one needs isolated- γ with: $p_T = x_T \sqrt{s/2} > 10-20$ GeV/c

Uncertainties in proton PDFs at high-x

Isolated- γ at "low"- \sqrt{s} & high-p_T are sentitive to high-x gluons & sea:

24/31

AFTER-LHC, ECT* Trento, Feb'13

David d'Enterria (CERN)

Uncertainties in nuclear PDFs at high-x

Even larger uncertainties for nuclear high-x sea & gluon PDFs:

Sea-quarks & gluons are virtually unknown in EMC & Fermi regions At all virtualities (including large) Q²

Uncertainties in nuclear PDFs at high-x

Isolated- γ at "low"- \sqrt{s} & high- p_{τ} are sentitive to high-x gluons & sea:

AFTER-LHC, ECT* Trento, Feb'13

David d'Enterria (CERN)

Isolated- γ in p(7 TeV)-p(rest): $\sqrt{s} \sim 115$ GeV

p-p photon kinematics at fixed-target LHC (central rapidities): To access x > 0.3 one needs isolated- γ at: $p_{\tau} = x_{\tau} \sqrt{s/2} > 20$ GeV/c

AFTER-LHC, ECT* Trento, Feb'13

Isolated- γ in p(7 TeV)-p(rest): $\sqrt{s} \sim 115$ GeV

p-p photon kinematics at fixed-target LHC (backwards rapidities): To access x > 0.3 one needs isolated- γ at: $p_{\tau} = x_{\tau} \sqrt{s/2e^{-y}} > 10 \text{ GeV/c}$

Isolated-γ in Pb(2.76 TeV)-Pb(rest): √s_{NN}~72 GeV

- Pb-Pb photon kinematics at fixed-target LHC:
 - To access x > 0.3 one needs isolated- γ at: $p_T = x_T \sqrt{s/2} > 10 \text{ GeV/c}$
- JETPHOX NLO pQCD calculations: do/dp_Tdy [pb/GeV] (very preliminary) Pb-Pb at $\sqrt{s_{NN}}$ =72 GeV y <0.5, p₁>20 GeV/c Isolation: R=0.4, E_{τ}^{had} <5 GeV 10⁴ 10³ PDF: EPS09 Scales: $\mu_i = p_{\tau}$ 10² ~1 count FF = BFG-II $\mathcal{L} \sim 7 \text{ nb}^{-1}/\text{year}$ 10 (Ongoing determination of uncertainties 10 15 20 25 25 30 _____(GeV/c) with 40 EPS09 eigenvalues ...)

Conclusions (LHC γ_{isol})

- There exists 40+ measurements of isolated-photons at collider energies ($\sqrt{s} = 0.2 7$ TeV):
 - Directly sensitive to gluon density: quark-gluon Compton scattering dominates x-sections (fragmentation-γ much reduced).
- ✓ Follow " x_{τ} scaling" with quasi-conformal n~4 power-law.
- Corresponding 400+ data points (~135 from LHC) can be used to add direct constraints to the gluon PDF.
- NNPDF reweighting technique used with NLO JETPHOX:
 - ✓ Good agreement data vs 100 replicas (only 6 datasets with χ^2 > 3).
 - ✓ Effective # of replicas reduced for LHC-7 TeV: N_{eff} ~ 87/100. For other c.m. energies: N_{eff} ~ N_{old}
 - ✓ LHC-7 TeV isolated-γ's have impact on xG(x,Q²) for 5·10⁻³ < x < 0.1: reduction of ~20% of gluon PDF uncertainty
 - LHC-7 TeV isolated-γ+jet have impact on wide x-range for g,u,d PDF only if exp. uncertainties reduced.

Conclusions (AFTER γ_{isol})

- Photons at AFTER (p-p, Pb-Pb at $\sqrt{s} = 72 115$ GeV):
 - ✓ Directly sensitive to high-x PDFs (x > 0.3 1)
 - ✓ Very uncertain valence gluon and anti-quarks in p and Pb PDFs
 - ✓ NLO predictions for isolated-photon x-sections:
 - Expected yields up to $p_T = 25$, 40 GeV/c
 - CT10 uncertainties in NLO:

p-p: ~150% for y=0, ~170% for y<0

Pb-Pb (EPS09): much larger (to be quantified ...)

- Outlook: NNPDF-reweighting study would be useful

Backup slides

Typical NLO scale uncertainties

Scales variations: $(\mu_R, \mu_F) = (1, 1), (1/2, 1), (1, 1/2), (1/2, 1/2), (2, 1), (1, 2), (2, 2) \times E_{T, \gamma}$

