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combination model with a relativistic description for the
parton-parton interaction !10". In addition, there is a sugges-
tion that the contribution of instantons to the fragmentation
of quarks could lead to single spin asymmetries !54", and
there are phenomenological models based on different as-
sumptions for the quark dynamics !55–58".
No theoretical predictions exist for the present results at

22 GeV/c , although a phenomenological model at
13 GeV/c including intermediate particle (#) production
reproduces some observed features of the data !59". This

momentum is generally considered too low for the models
described above to apply. On the other hand, the similarity of
these data to the E704 results suggests that a similar mecha-
nism generates AN for inclusive pion production at both mo-
menta.

VII. CONCLUSIONS

Large analyzing powers were observed for xF!0.5 and
0.6"pT"1.2 GeV/c in $# and $$ inclusive production on

FIG. 18. Analyzing power AN for $#, $$, and proton produc-
tion on carbon as a function of xF at 21.6 GeV/c .

FIG. 19. Analyzing power for $$ and $# as a function of xF on
carbon, CH2, and hydrogen. Note some points are slightly offset
from the true value of xF to make it easier to distinguish the points.

TABLE XV. Analyzing powers AN for $#, $$, and protons. Errors are statistical only, and do not include the relative error coming from
the uncertainty in Pb .

$# $$ Protons
xF %pT&(GeV/c) Target AN (%) AN (%) AN (%)

0.45–0.50 '0.5 carbon 4.8%2.0 3.7%2.1 #1.6%3.8
hydrogen 0.7%2.0 3.3%2.5
CH2 2.9%1.1 0.8%1.3

0.50–0.55 '0.6 carbon 2.1%1.3 5.9%1.1 0.5%2.0
hydrogen #0.5%1.4 7.0%1.6
CH2 2.1%1.3 4.7%1.3

0.55–0.60 '0.7 carbon #0.4%1.4 12.5%1.1 2.5%1.8
hydrogen 0.0%1.5 15.4%1.5
CH2 #0.1%1.7 9.8%1.6

0.60–0.65 '0.7 carbon #11.3%2.0 22.8%1.5 #2.6%1.8
hydrogen #12.9%2.1 23.6%2.0
CH2 #10.7%2.8 16.9%2.7

0.65–0.70 '0.8 carbon #26.1%3.4 30.2%2.4 #1.1%2.1
hydrogen #25.0%3.3 30.3%2.7
CH2 #25.1%4.9 27.6%4.1

0.70–0.75 '0.9 carbon #43.6%6.5 44.0%4.0 2.4%2.9
hydrogen #29.6%6.1 42.1%4.3
CH2 #24.7%9.0 42.8%6.7

0.75–0.80 '1.0 carbon #30.5%13.4 31.0%8.2 5.9%3.8
hydrogen #51.2%11.2 38.7%6.6
CH2 #29.6%17.3 26.9%10.9
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large SSAs observed in several experiments
(but not such a high energy so far...) 

same trend: AN increases with xF, is positive for 
π+, negative for π- (getting into the valence 

quark region?)
could AN be related to elementary QCD 

dynamics?
could it persist at higher energies?
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Eq
�s at quark level 
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good pQCD description of data at 200 GeV, at all 
rapidities, down to pT of 1-2 GeV/c 

Polarization-averaged cross sections at √s=200 GeV



tude. We note also more recent theoretical work which
describes the RHIC midrapidity !0 data, and which intro-
duces an intrinsic kT dependence into the parton distribu-
tion and fragmentation functions [18], or which includes
soft gluon emission in the interaction [19]. Both new
approaches improve agreement with data at lower energies
and have a smaller effect on the

!!!
s
p ! 200 GeV midrapid-

ity cross sections.
The inset of Fig. 1 shows the lower pT region in more

detail including high precision data for the charged pion
cross section from [20]. The data show a transition in the
pT dependence of the cross section, from exponential to a
power law dependence, in the region pT " 1–2 GeV=c. In
order to estimate possible contamination from nonpertur-
bative physics in the higher pT data, an exponential func-

tion (# e$"pT ) representing a nonperturbative component
is fit to the charged pion spectrum in the region pT ! 0:3 to
0:8 GeV=c (only the lowest pT !0 data point is in this
range) and extrapolated to the higher pT region. The ex-
ponential fit for the low pT region gives " ! 5:56%
0:02 &GeV=c'$1, with #2=NDF ! 6:2=3. Only statistical
uncertainties for the charged pion data were used in the fit.
The dominant systematic uncertainty for the points in the
fitted pT range is a #12% normalization uncertainty (ex-
cluding the normalization uncertainty from the MB trigger
cross section). Beyond about pT ! 1 GeV=c, the data lie
above this single exponential. The fraction of the exponen-
tial contribution to the data for the 2–2:5 GeV=c pT bin is
found to be less than 10%, with a negligible contribution
for higher pT . This is the basis for applying the pQCD
formalism to the double helicity asymmetry data with
pT > 2 GeV=c.

For the 2005 run, each collider ring of RHIC was filled
with up to 111 bunches in a 120 bunch pattern, spaced
106 ns apart, with predetermined patterns of polarization
signs for the bunches. Spin rotators, sets of four helical
dipole magnets on each side of PHENIX, rotate the polar-
ization orientation from vertical, the stable spin direction
in the RHIC arcs, to longitudinal at the interaction point
[21]. Beam helicity asymmetries are obtained by tagging
the polarization signs of the bunches for each event. The
bunches for one beam alternate in polarization sign, and
pairs of bunches alternate in sign for the other beam. In this
way data for all combinations of beam helicity are col-
lected at the same time, and the possibility of false asym-
metries due to changing detector response versus spin state
is greatly reduced. Each RHIC fill, typically lasting 8 h,
used one of four bunch spin patterns.

The beam polarizations for 2005 were measured using
fast carbon target polarimeters [22], normalized by abso-
lute polarization measurements made during 2005 by a
separate polarized atomic hydrogen jet polarimeter [23].
The beam polarizations, from luminosity-weighted aver-
ages over 104 RHIC fills used in the analysis, were hPBi !
0:50% 0:002&stat' % 0:025&systB' % 0:015&systG' and
hPYi! 0:49% 0:002&stat' % 0:025&systY' % 0:015&systG',
for blue (B) and yellow (Y) RHIC beams, respectively, for
the bunches colliding at PHENIX. The systematic uncer-
tainties have been separated into uncorrelated uncertainties
for each beam, ‘‘systB’’ and ‘‘systY,’’ and a global system-
atic uncertainty ‘‘systG,’’ which is common for both beams
and comes from systematic uncertainty in jet polarimeter
measurements [24]. For comparison, the polarizations in
the 2004 run were 0:44% 0:08&syst'.

Local polarimeters based on very forward neutron pro-
duction (production angle 0.3–2.5 mrad) [6,25] were used
to set up and monitor the beam polarization orientation at
PHENIX. The polarimeters monitor the transverse polar-
ization of each beam at PHENIX, which can be compared
to the beam polarization measured by the RHIC polar-
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FIG. 1 (color online). The neutral pion production cross sec-
tion at

!!!
s
p ! 200 GeV as a function of pT (squares) and the

results of NLO pQCD calculations for theory scales $ ! pT=2
(dotted line), pT (solid line) and 2pT (dashed line), see text for
details; note that the error bars are smaller than the points. The
inset shows, in addition to !0 (squares), data for &!( ( !$'=2
(solid circles), and a fit of charged pion data to an exponential
function for pT < 0:8 GeV=c (dashed line). The bottom panel
shows the relative difference between the data and theory for the
three theory scales. Experimental uncertainties (excluding the
9.7% normalization uncertainty) are shown for the $ ! pT
curve.

A. ADARE et al. PHYSICAL REVIEW D 76, 051106(R) (2007)

RAPID COMMUNICATIONS

051106-4

Phenix data
22

TABLE V: Systematic error contributions for the double ratio
R� . The classifications A and B are defined in section V.

Source Type Value at low (high) pT (%)

⇡0 yield extraction A 7.1
Beam background A 1 (3) in d+Au
Tower energy scale B 3
Tower gain spread B 1
SMD energy scale B 12
SMD gain spread B 1
⌘/⇡0 B 2
⇡0 yield fit B 1.5

in the BEMC could not be distinguished from genuine
photons originating from the event vertex. Therefore,
we varied the cuto↵ value for the electromagnetic energy
fraction r in an event [Eq. (1)] in the range r = 0.7–0.9.
This propagated into 1–3% point-to-point systematic error
of R� .

VI. RESULTS AND DISCUSSION

A. Cross section for neutral pion production

The invariant di↵erential cross section for ⇡

0 and ⌘

production in inelastic p+ p interactions is given by
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It has been shown that the singly di↵ractive contribu-
tion to the inelastic cross section is negligible at pT >

1 GeV/c [23]. Therefore, we can assume that the di↵eren-
tial inelastic cross section is equal to the di↵erential NSD
cross section in our pT range. The total NSD cross section
in p+ p collisions was found to be �

p+p
NSD = 30.0± 3.5 mb,

and the total hadronic cross section in d+Au collisions
was found to be �

d+Au

hadr

= 2.21± 0.09 b (see section III A).
The measured cross sections for ⇡0 production in the

p+ p (presented in Ref. [19] and included here for com-
pleteness) and d+Au collisions are shown in Fig. 22. The
cross sections are compared to the NLO pQCD calcu-
lations [52]. The CTEQ6M parton densities [63] and
the KKP fragmentation functions [64] were used in the
p+p calculation. The d+Au calculation used the nuclear
parton distributions for gold [65–67], in addition. The
factorization scale µ was set equal to pT and was varied by
a factor of two to estimate the scale uncertainty, indicated
by the dashed curves in the lower panels of Fig. 22. These
panels show the ratio of the measured cross sections to the
corresponding QCD predictions. The error bars shown in
the plot are the statistical and the shaded bands are the
systematic uncertainties. The normalization uncertain-
ties are indicated by shaded bands around unity on the
right-hand side of each ratio plot. The measured ⇡
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FIG. 22: (a) Cross section for inclusive ⇡0 production in
p + p and d + Au collisions at

p
sNN = 200 GeV, divided

by the corresponding NLO pQCD calculations [52] for (b)
p+ p and (c) d+Au collisions. The error bars are statistical
and shaded bands are pT -correlated systematic uncertainties.
Normalization uncertainties are indicated by shaded bands
around unity in the lower panels.

sections were not corrected for feed-down contributions
from ⌘ ! 3⇡0, ⌘ ! ⇡

+

⇡

�
⇡

0, and K

0

S ! ⇡

0

⇡

0 decays,
which are expected to be negligible. It is seen that the
measured ⇡

0 cross sections in both p+ p and d+Au colli-
sions are well described by the NLO pQCD calculations
in the fragmentation region pT > 2 GeV/c.

In Fig. 23, we compare the ⇡

0 measurements in the
p + p and d + Au data with the previous ⇡

± measure-
ments by STAR [23, 24] and with the ⇡

0 measurements
by PHENIX [6, 26]. Here, and in all following figures, the
cited data are shown with their statistical and systematic
uncertainties added in quadrature. The normalization
uncertainties shown by the grey bands in the figure are
largely correlated between the ⇡

0 and the ⇡

± data points
and uncorrelated with the PHENIX normalization uncer-
tainties of similar magnitude. It is seen that the neutral
and charged pion spectra from STAR agree very well
in both p + p and d + Au data, in spite of di↵erent de-
tector subsystems and analysis techniques used in these

STAR data
arXiv:0912.2838√s = 200 GeV



rather good agreement even at at √s=62.4 GeV

11% normalization 
uncertainty not included

mid-rapidity pions 

Comparison of NLO pQCD calculations with 
BRAHMS π data at high rapidity. The 

calculations are for a scale factor of µ=pT, 
KKP (solid) and DSS (dashed) with CTEQ5 

and CTEQ6.5.



words, we rescale the matched resummed result by the
ratio of NLO cross sections integrated over the experimen-
tally relevant rapidity region or over all !, respectively
[27].

Figure 3 shows our results for the spin asymmetry A"LL at!!!
S
p
! 19:4 GeV, for the NLO and NLL resummed cases,

defined as in Eq. (2.3), averaged over the pion’s
Feynman-xF ! xT sinh"!#, jxFj $ 0:1. Again the scales
have been chosen to be # ! pT . We also show the data
by the Fermilab E704 experiment [8]. As expected from

Fig. 1, A"LL generally decreases significantly from NLO to
NLL. After NLL resummation, even a set with a very large
!g, such as the GRSV ‘‘maximal’’ scenario (which is now
already ruled out by other measurements [5–7]) shows
rough agreement with the data, given the rather large
experimental uncertainties. It is interesting to note that
similar results were found in [10] on the basis of LO
studies invoking ‘‘intrinsic-kT’’ effects.

We now return to the case of pp scattering at RHIC at!!!
S
p
! 62:4 GeV. Recently, first preliminary data for the

spin-averaged high-pT pion cross section as well as for the
spin asymmetry A"LL were reported by the Phenix collabo-
ration [16]. The data cover the pseudorapidity region j!j $
0:35. Figure 4 compares our NLO and NLL resummed
results for the spin-averaged cross section to the Phenix
data. We use the scales # ! $pT with $ ! 1=2, 1, 2. It is
interesting to see that the data lie at the upper end of the
rather wide NLO scale band, whereas the resummed pre-
dictions have a smaller scale dependence and tend to
describe the data rather well with scale # ! pT . We re-
mind the reader that at

!!!
S
p
! 200 GeV the RHIC data are

very well described by NLO with scale # ! pT [5], while
in the fixed-target regime resummation effects were found
to be very significant (see [11] and Fig. 1 above). We
interpret all these features as indicating that threshold
logarithms start to become relevant at

!!!
S
p
! 62:4 GeV,

which is ‘‘halfway’’ between the typical fixed-target re-
gime and RHIC’s 200 GeV. Encouraged by the results in
Fig. 4, we show in Fig. 5 our NLO and NLL results for the
spin asymmetry A"LL at

!!!
S
p
! 62:4 GeV, along with the

Phenix data [17]. As can be seen in Fig. 5, sets with a large
gluon polarization, like ‘‘GRSV max G,’’ show a clear
disagreement with the preliminary data. We observe that
there is again a decrease of A"LL when going from NLO to
NLL, but that the resummation effects are somewhat
smaller than what we found at

!!!
S
p
! 19:4 GeV. We have

FIG. 3 (color online). Results for the double-spin asymmetry
A"LL at NLO and for the NLL resummed case for various sets of
polarized parton distributions, at

!!!
S
p
! 19:4 GeV. We also show

the experimental data of [8].

FIG. 4 (color online). Invariant cross section for pp! "0X at
!!!
S
p
! 62:4 GeV at NLO and for the NLL resummed case. We also

show the preliminary Phenix data [16].
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PRD 76, 094021 (2007)
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Good description of unpolarized cross-section, with 
collinear factorization. But AN is not zero ... 

 6 

Transverse spin structure of the proton 
A natural next step in the investigation of nucleon structure is an expansion of our current picture of the 
nucleon by imaging the proton in both momentum and impact parameter space. At the same time we need to 
further our understanding of color interactions and how they manifest in different processes. In the new 
theoretical framework of transverse momentum dependent parton distributions (TMDs) we can obtain an 
image in the transverse as well as longitudinal momentum space (2+1 dimensions).  This has attracted 
renewed interest, both experimentally and theoretically in transverse single spin asymmetries (SSA) in 
hadronic processes at high energies, which have a more than 30 years history. First measurements at RHIC 
have extended the observations from the fixed-target energy range to the collider regime. Future PHENIX 
and STAR measurements at RHIC with transversely polarized beams will provide unique opportunities to 
study the transverse spin asymmetries in Drell-Yan lepton pair, direct photon, and W boson productions, and 
other complementary processes. Also evolution and universality properties of these functions can be studied. 
Polarized nucleon-nucleus collisions may provide further information about the origin of SSA in the forward 
direction and the saturation phenomena in large nuclei at small x. 

Transverse asymmetries at RHIC  

Single spin asymmetries in inclusive hadron production in proton-proton collisions have been measured at 
RHIC for the highest center-of-mass energies to date, ¥s=500 GeV.  Figure 6 summarizes the measured 
asymmetries from different experiments as functions of Feynman-x (xF ~ x1-x2) and transverse momentum. 
Surprisingly large asymmetries are seen that are nearly independent of  over a very broad range. To 
understand the observed significant SSAs one has to go beyond the conventional collinear parton picture in 
the hard processes.  Two theoretical formalisms have been proposed to generate sizable SSAs in the QCD 
framework: transverse momentum dependent parton distributions and fragmentation functions, which 
provide the full transverse momentum information and the collinear quark-gluon-quark correlation, which 
provides the average transverse information.   

 
At RHIC the pT-scale is sufficiently large to make the collinear quark-gluon-quark correlation formalism the 
appropriate approach to calculate the spin asymmetries. At the same time, a transverse momentum dependent 
model has been applied to the SSAs in these hadronic processes as well. Here, various underlying 
mechanisms can contribute and need to be disentangled to understand the experimental observations in 
detail, in particular the pT-dependence. These mechanisms are associated with the spin of the initial state 
nucleon (Sivers/Qiu-Sterman effects) and outgoing hadrons (Collins effects). We identify observables below, 
which will help to separate the contributions from initial and final states, and will give insight to the 
transverse spin structure of hadrons.  

 
Figure 6: Transverse single spin asymmetry measurements for neutral pions at different center-of-mass energies as function of 

Feynman-x (left) and pT-dependence at = 500 GeV (right). 



patterns of polarization signs. The unfilled 9 bunches are
sequential and correspond to the abort gap needed to eject
the stored beams. Pb was measured every 3 h during RHIC
stores by a polarimeter that detected recoil carbon ions
produced in elastic scattering of protons from carbon rib-
bon targets inserted into the beams. The effective AN of this
polarimeter was determined from p" þ p" elastic scattering
from a polarized gas jet target [24] thereby determining
Pb ¼ 55:0# 2:6% (56:0# 2:6%) for the Blue (Yellow)
beam in the 2006 run [25].

The FPD comprises four modules, each containing a
matrix of lead glass (PbGl) cells of dimension 3:8 cm$
3:8 cm$ 18 radiation lengths. Pairs of modules were
positioned symmetrically left (L) and right (R) of the
beam line in both directions, at a distance of %750 cm
from the interaction point [21]. The modules facing the
Yellow (Blue) beam are square matrices of 7$ 7 (6$ 6)
PbGl cells. Data from all FPD cells were encoded for each
bunch crossing, but only recorded when the summed en-
ergy from any module crossed a preset threshold.

Neutral pions are reconstructed via the decay !0 ! "".
The offline event analysis included conversion of the data
to energy for each cell, formation of clusters and recon-
struction of photons using a fit with the function that
parametrizes the average transverse profile of electromag-
netic showers. Collision events were identified by requiring
a coincidence between the east and west STAR beam-beam
counters, as used for cross section measurements [26].
Events were selected when two reconstructed photons
were contained in a fiducial volume, whose boundary
excludes a region of width 1=2 cell at the module edges.
Detector calibration was determined from the !0 peak
position in diphoton invariant mass (M"") distributions.

The estimated calibration accuracy is 2%. The analysis was
validated by checking against full PYTHIA/GEANT simula-
tions [27]. The reconstructed !0 energy resolution is given
by #E!=E! & 0:16=

ffiffiffiffiffiffiffi
E!

p
.

Because of the limited acceptance there is a strong
correlation between xF and pT for reconstructed !0

(Fig. 1). Spin effects in the xF-pT plane are studied by
positioning the calorimeters at different transverse dis-
tances from the beam, maintaining L=R symmetry for pairs
of modules. Figure 1 shows loci from h$i ¼ 3:3, 3.7, and
4.0. There is overlap between the loci, providing cross-
checks between the measurements. Because the measure-
ments were made at a colliding beam facility, both xF > 0
and xF < 0 results are obtained concurrently.
Events with 0:08<M"" < 0:19 GeV=c2 were counted

separately by spin state from one or the other beam, with
no condition on the spin state of the second beam, in the xF
bins shown in Fig. 1. For each run i, AN;i for each bin was
then determined by forming a cross ratio

AN;i ¼
1

Pb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL";iNR#;i

p ' ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL#;iNR";i

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL";iNR#;i

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL#;iNR";i

p ; (1)

whereNLðRÞ"ð#Þ;i is the number of events in the L (R) module
when the beam polarization was up (down). Equation (1)
cancels spin dependent luminosity differences through
second order. Statistical errors were approximated by
!AN;i ¼ ½Pb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL";i þ NL#;i þ NR";i þ NR#;i

p +'1, valid for
small asymmetries. All measurements of Pb for a store
were averaged and applied to get AN;i for each bin. The
run-averaged AN #!AN values are shown in Fig. 2.

FIG. 1 (color online). Correlation between pion longitudinal
momentum scaled by

ffiffiffi
s

p
=2 (xF) and transverse momentum (pT)

for all events. Bins in xF used in Figs. 2 and 4 are indicated by
the vertical lines. There is a strong correlation between xF and
pT at a single pseudorapidity (h$i).

FIG. 2 (color online). Analyzing powers in xF bins (see Fig. 1)
at two different h$i. Statistical errors are indicated for each
point. Systematic errors are given by the shaded band, excluding
normalization uncertainty. The calculations are described in the
text. The inset shows examples of the spin-sorted invariant mass
distributions. The vertical lines mark the !0 mass.
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STAR data

Systematic errors potentially arise from several sources.
The bunch counter, used for the spin directions, identifies
events in the abort gaps arising from single-beam back-
grounds. They account for <5! 10"4 of the observed
yield. Systematic effects from gain variations with time
are controlled by polarization reversals of the stored beam
bunches, as demonstrated by examples of spin-sorted M!!

for L;R modules in the inset of Fig. 2. Distributions of the
significance, Si ¼ ðAN;i " ANÞ=!AN;i, are well described
by zero mean value Gaussian distributions with " equal to
unity, as expected if the uncertainties are dominated by
statistics, except near the trigger threshold where larger "
is observed. Systematic errors are estimated from "!
!AN and differences in AN associated with #0 identifica-
tion, with the largest value chosen. The upper limit on a
correlated systematic error, common to all points, arising
from instrumental effects is $AN & 4! 10"4.

The same pair of modules concurrently measure AN

values consistent with zero for xF < 0 and AN that in-
creases with xF for xF > 0, depending on which beam
spin is chosen. Null results at xF < 0 are natural since a
possible gluon Sivers function is probed where the unpo-
larized gluon distribution is large. For xF > 0, a calculation
[13,28] using quark Sivers functions fit [29] to SIDIS data
[7] best describes our results at h%i ¼ 3:3. Twist-3 calcu-
lations [16] that fit p" þ p ! #þ X data at

ffiffiffi
s

p ¼ 20 GeV
[4] and preliminary RHIC results from the 2003 and 2005
runs at

ffiffiffi
s

p ¼ 200 GeV [21,22] best describe the data at
h%i ¼ 3:7. Both calculations are in fair agreement with the
variation of AN with xF. Neither calculation describes data
at both h%i.

Events from modules at different h%i that overlap in the
xF-pT plane (Fig. 1) provide consistent results. Hence, it is
possible to further bin the results not only by xF but also by
pT . For this analysis, pT is determined from the measured
energy, the fitted position of the #0 within an FPD module,
and the measured position of the module relative to the
beam pipe and to the collision vertex. The z component of
the event vertex uses a coarse time difference between the
east and west beam-beam counters, and is determined to
(20 cm resulting in !pT=pT ¼ 0:04, where !pT is the
uncertainty in pT . One method of determining the pT

dependence (Fig. 3) was to select events with jxFj> 0:4.
AN is consistent with zero for xF <"0:4. For xF > 0:4,
there is a hint of an initial decrease of AN with pT , although
the statistical errors are large, since h%i ¼ 4:0 data were
only obtained in the 2003 and 2005 runs with limited
integrated luminosity and polarization. For pT >
1:7 GeV=c, AN tends to increase with pT for xF > 0:4.
This is contrary to the theoretical expectation that AN

decreases with pT .
The results in Fig. 3 may still reflect small correlations

between xF and pT for each point, rather than the depen-
dence of AN on pT at fixed xF. To eliminate this correla-
tion, event selection from Fig. 1 was made in bins of xF,

followed by bins in pT . The resulting variation of AN with
pT is shown in Fig. 4, compared to calculations [13] using
a Sivers function fit to p" þ p ! #þ X data [4] and twist-
3 calculations [16]. For each point, the variation of hxFi is
smaller than 0.01. There is a clear tendency for AN to
increase with pT , and no significant evidence over the
measured range for AN to decrease with increasing pT , as
expected by the calculations. This discrepancy may arise
from unexpected TMD fragmentation contributions, xF; pT

dependence of the requisite color-charge interactions, evo-
lution of the Sivers functions, or from process dependence
not accounted for by the theory.
In summary, we have measured the xF and pT depen-

dence of the analyzing power for forward #0 production in
p" þ p collisions at

ffiffiffi
s

p ¼ 200 GeV in kinematics (0:3<
xF < 0:6 and 1:2< pT < 4:0 GeV=c) that straddle the
region where cross sections are found in agreement with
pQCD calculations. The xF dependence of the #0 AN is in

FIG. 3 (color online). Analyzing powers versus #0 transverse
momentum (pT) for events with scaled #0 longitudinal momen-
tum jxFj> 0:4. Errors are as described for Fig. 2.

FIG. 4 (color online). Analyzing powers versus #0 transverse
momentum (pT) in fixed xF bins (see Fig. 1). Errors are as
described for Fig. 2. The calculations are described in the text.
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FIG. 1: pT vs. xF for the data used in the SSA analysis.
The dotted boxes are for the measurements from FS at 6◦,
the filled boxes are from FS at 2.3◦ and the empty boxes with
solid line are from 3◦. Data from FS at 2.3◦ and 3◦ are used
in combination for kaons and protons. The size of the boxes
represents the relative intensity of the data in logarithmic
scale. The 5 bands marked as (a)-(e) are the pT ranges used
in the Fig. 3.

ton distribution functions and fragmentation processes.
We present here the first measurement of xF -dependent
SSAs of identified charged hadrons, π±, K±, and pro-
tons, from transversely polarized proton-proton collisions
at 62.4 GeV at RHIC.

The SSA is defined as a “left-right” asymmetry of pro-
duced particles from the hadronic scattering of trans-
versely polarized protons by unpolarized protons. Ex-
perimentally the asymmetry can be obtained by flipping
the spins of polarized protons, and is customarily defined
as analyzing power AN :

AN =
1

P
(N+ − LN−)

(N+ + LN−)
, (1)

where P is polarization of the beam, L is the spin de-
pendent relative luminosity (L = L+/L−) and N+(−)

is the number of detected particles with beam spin vec-
tor oriented up (down). Since both colliding beams are
polarized at RHIC, the polarization of “target” protons
is averaged over in Eq. 1. The systematic error on the
AN measurements is estimated to be 10% including un-
certainties from the beam polarization, δP/P ∼ 7.2% for
the “Blue” beam (circulating clockwise) and 9.3% for the
“Yellow” beam (circulating counter-clockwise). The po-
larization of the Blue (Yellow) beam is utilized for the
AN measurements of particles in positive (negative) xF .
The systematic error represents mainly scaling uncertain-
ties on the values of AN . The average polarization of the
beam P measured by the Hydrogen Jet and pC polarime-
ters is about 50% for the Blue and Yellow beams [17].

The data presented here were collected by the
BRAHMS detector system [18] with polarized p + p col-
lisions from RHIC with a sampled integrated luminosity
of 0.21 pb−1 at

√
s = 62.4 GeV. The relative luminosity

(L) between the sums of spin-up and spin-down bunches
was measured with a set of Cherenkov radiators placed
symmetrically with respect to the nominal interaction
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FIG. 2: AN vs. xF for π+ and π−. Circle symbols are for
π+ and box symbols are for π− measured in FS at 2.3◦ (solid
symbols) and 3◦ (open symbols). The curves are from the-
oretical calculations. Solid lines are to be compared with
the data at 2.3◦ and dotted lines are for 3◦. Thick (solid
and dotted) lines are from the initial-state Twist-3 calcula-
tions [21, 23], medium lines are from the final-state Twist-3
calculations [24, 25]. Predictions from the Sivers function
calculations are shown as thin lines [26, 27]. Only statistical
errors are shown where larger than symbols.

point [14]. The detectors cover the pseudo-rapidity (η)
interval from 3.26 < |η| < 5.25, and are measured from
Vernier scans to be sensitive to ∼33% of the total inelas-
tic cross-section of 36 mb at 62.4 GeV. The uncertainty
of determining the relative luminosities is estimated to
be 0.3%. The Forward Spectrometer (FS) measures
charged particle tracks in the forward kinematic region
(θ = 2.3◦ − 15◦) with good momentum resolution and
particle identification. The momentum (p) resolution of
the FS is δp/p ≈ 0.0016p for the half field setting where p
is in GeV/c. Particle identification was done by utilizing
the Ring Image Cherenkov Detector (RICH) [19] detec-
tor which is capable of identifying pions and kaons up
to p ∼ 35 GeV/c and protons above 17 GeV/c with an
efficiency of ∼97% and a negligible (!0.5%) probability
of misidentification in the measured kinematic range (p
< 20 GeV/c). The kinematic coverages of the data taken
with the FS at 2.3◦, 3◦ and 6◦ as a function of pT and xF

are shown in Fig. 1, where the narrow pT -xF correlated
band at a given setting is due to the small aperture of the
spectrometer. A detailed description of the spectrometer
and other experimental details can be found in [18].

The analyzing power AN for charged pions, AN (π+)
and AN (π−) at

√
s = 62.4 GeV as a function of xF is

shown in Fig. 2 for the two FS angle settings, 2.3◦ and
3◦. At a fixed xF value, the 3◦ setting samples higher pT

pions as indicated in Fig. 1. The mean pT values 〈pT 〉 at
xF =0.55 are 1.08 and 1.28 GeV/c at 2.3◦ and at 3◦, re-
spectively [20]. The measured AN values show strong de-
pendence in xF reaching large asymmetries up to ∼40%
at xF ∼ 0.6 and no significant asymmetries at −xF . The
decrease of AN at high-pT ( "1 GeV/c) and high-xF ,
especially for π+, as shown in Fig. 2 by comparing the
two sets of measurements at 2.3◦ and at 3◦ might indi-
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FIG. 3: AN vs. xF for π+ and π− for positive xF at fixed pT values: (a)0.4 < pT < 0.5, (b)0.5 < pT < 0.6, (c)0.6 < pT < 0.8,
(d)0.8 < pT < 1.0, and (e)1.0 < pT < 1.2 GeV/c as shown in Fig. 1, respectively.

cate that AN is in accordance with the expected power-
suppressed nature of AN [21]. The asymmetries and their
xF -dependence are qualitatively in agreement with the
measurements from E704 at

√
s = 19.3 GeV and also

most recent AN (π0) measurements at RHIC
√

s = 200
GeV [3, 13]. Figure 2 also compares AN (π) with a pQCD
calculation in the range of pT > 1 GeV/c using “ex-
tended” twist-3 parton distributions [10] including the
“non-derivative” contributions [21, 22, 23]. In this frame-
work, results of two calculations from the model are com-
pared with the data. One is with only two quark va-
lence densities (uv,dv) in the ansatz, which is shown in
Fig. 2. The second with additional sea- and anti- quark
contributions in the model fit slightly increases AN (π)
(∼5%). As the calculations show, the dominant contri-
bution to SSA is from valence quarks with contributions
from sea- and anti- quarks small enough that the cur-
rent measurements are not able to quantitatively con-
strain the contribution. The calculations, which were
done in the same kinematic range as the data, describe
the data, especially AN (π−) within the uncertainties.
AN (π) calculated from the “final-state twist-3”[24] which
uses the twist-3 fragmentation function (FF) for the pion
clearly under-predicts AN (π−) while is in a reasonable
agreement within uncertainties for AN (π+). In Fig. 2,
the data are also compared with calculations including
Sivers mechanism which successfully describe the E704
AN data using valence-like Sivers functions [26, 27] for u
and d quarks with opposite sign. The FFs used are from
the KKP parameterization [28], but the Kretzer FF [29]
gives similar results. The calculations underestimate AN ,
which indicates that TMD parton distributions are not
sufficient to describe the SSA data at this energy. As very
recent studies [30] suggest, Collins mechanism might also
be needed to account fully for the observed asymmetries.
All AN (π) calculations compared with the data shows
|AN (π+)| ∼ |AN (π−)| while the data exhibit |AN (π+)|
< |AN (π−)| where pT ! 1 GeV/c. Since there is a strong
kinematic correlation between xF and pT in the data as
shown in Fig. 1, the rise of AN in Fig. 2 can be also
driven by pT .

Figure 3 shows AN (π+) and AN (π−) for 5 different pT
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FIG. 4: AN(K+) and AN(K−) vs. xF . Circle symbols are for
K+ and box symbols are for K−. The solid (K+) and dotted
(K−) lines are from the initial-state twist-3 calculations with
(thick lines) and without (medium lines) sea- and anti-quark
contribution. Calculations for the Sivers function are shown
as thin lines. Errors are statistical only.

regions from 0.4 to 1.2 GeV/c. As seen in Fig. 3, the
xF dependence of AN at low-pT (pT " 0.5 GeV/c) is
very small but increases with pT in the kinematic region
at least up to pT∼1 GeV/c. The pT -dependence of ana-
lyzing powers with xF is qualitatively consistent with the
measurements at

√
s = 19.3 GeV, where strong xF depen-

dent SSAs is observed only above a pT “threshold” (" 0.7
GeV/c) [3]. It is noted that the trend is also qualitatively
in agreement with the polarization of the Λs produced at
the same collision energy,

√
s = 62 GeV [5]. The SSAs

for charged kaons as a function of xF are shown in Fig. 4
together with twist-3 and Sivers calculations (see the fig-
ure caption for details). The asymmetry for K+(us̄) is
positive as is the AN of π+(ud̄), which is expected if the
asymmetry is mainly carried by valence quarks, but the
measured positive SSAs of K−(ūs) seem to contradict
the näive expectations [31] of valence quark dominance.
In a valence-like model (no Sivers effect from sea-quarks
and/or gluons), non-zero positive AN (K−) implies large

non-leading FFs (DK
−

u , DK
−

d
) and insignificant contri-

bution from strange quarks. Twist-3 calculations using
Kretzer FF also under-predict AN (K−) due to the small
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(d)0.8 < pT < 1.0, and (e)1.0 < pT < 1.2 GeV/c as shown in Fig. 1, respectively.

cate that AN is in accordance with the expected power-
suppressed nature of AN [21]. The asymmetries and their
xF -dependence are qualitatively in agreement with the
measurements from E704 at
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s = 19.3 GeV and also

most recent AN (π0) measurements at RHIC
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s = 200
GeV [3, 13]. Figure 2 also compares AN (π) with a pQCD
calculation in the range of pT > 1 GeV/c using “ex-
tended” twist-3 parton distributions [10] including the
“non-derivative” contributions [21, 22, 23]. In this frame-
work, results of two calculations from the model are com-
pared with the data. One is with only two quark va-
lence densities (uv,dv) in the ansatz, which is shown in
Fig. 2. The second with additional sea- and anti- quark
contributions in the model fit slightly increases AN (π)
(∼5%). As the calculations show, the dominant contri-
bution to SSA is from valence quarks with contributions
from sea- and anti- quarks small enough that the cur-
rent measurements are not able to quantitatively con-
strain the contribution. The calculations, which were
done in the same kinematic range as the data, describe
the data, especially AN (π−) within the uncertainties.
AN (π) calculated from the “final-state twist-3”[24] which
uses the twist-3 fragmentation function (FF) for the pion
clearly under-predicts AN (π−) while is in a reasonable
agreement within uncertainties for AN (π+). In Fig. 2,
the data are also compared with calculations including
Sivers mechanism which successfully describe the E704
AN data using valence-like Sivers functions [26, 27] for u
and d quarks with opposite sign. The FFs used are from
the KKP parameterization [28], but the Kretzer FF [29]
gives similar results. The calculations underestimate AN ,
which indicates that TMD parton distributions are not
sufficient to describe the SSA data at this energy. As very
recent studies [30] suggest, Collins mechanism might also
be needed to account fully for the observed asymmetries.
All AN (π) calculations compared with the data shows
|AN (π+)| ∼ |AN (π−)| while the data exhibit |AN (π+)|
< |AN (π−)| where pT ! 1 GeV/c. Since there is a strong
kinematic correlation between xF and pT in the data as
shown in Fig. 1, the rise of AN in Fig. 2 can be also
driven by pT .

Figure 3 shows AN (π+) and AN (π−) for 5 different pT
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K+ and box symbols are for K−. The solid (K+) and dotted
(K−) lines are from the initial-state twist-3 calculations with
(thick lines) and without (medium lines) sea- and anti-quark
contribution. Calculations for the Sivers function are shown
as thin lines. Errors are statistical only.

regions from 0.4 to 1.2 GeV/c. As seen in Fig. 3, the
xF dependence of AN at low-pT (pT " 0.5 GeV/c) is
very small but increases with pT in the kinematic region
at least up to pT∼1 GeV/c. The pT -dependence of ana-
lyzing powers with xF is qualitatively consistent with the
measurements at

√
s = 19.3 GeV, where strong xF depen-

dent SSAs is observed only above a pT “threshold” (" 0.7
GeV/c) [3]. It is noted that the trend is also qualitatively
in agreement with the polarization of the Λs produced at
the same collision energy,

√
s = 62 GeV [5]. The SSAs

for charged kaons as a function of xF are shown in Fig. 4
together with twist-3 and Sivers calculations (see the fig-
ure caption for details). The asymmetry for K+(us̄) is
positive as is the AN of π+(ud̄), which is expected if the
asymmetry is mainly carried by valence quarks, but the
measured positive SSAs of K−(ūs) seem to contradict
the näive expectations [31] of valence quark dominance.
In a valence-like model (no Sivers effect from sea-quarks
and/or gluons), non-zero positive AN (K−) implies large

non-leading FFs (DK
−

u , DK
−
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) and insignificant contri-

bution from strange quarks. Twist-3 calculations using
Kretzer FF also under-predict AN (K−) due to the small
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are there SSAs in other processes?



TMD factorization holds at large Q2, and PT ≈ k⊥ ≈ ΛQCD

(Collins, Soper, Ji, J.P. Ma, Yuan, Qiu, Vogelsang, Collins, Metz)

d�⇥p�⇥hX =
�

q

fq(x,k⇥;Q2)� d�̂⇥q�⇥q(y, k⇥;Q2)�Dh
q (z,p⇥;Q2)

PT � Q2Two scales:

SSAs and TMDs in SIDIS 

�q �0
q

p, Sp, S

Q2Q2

h h

d6� � d6�⌅p��⌅hX

dxB dQ2 dzh d2P T d⇥S

p� ⇥ P T � zh k�

talks by S. Melis 
and G. Schnell

TMD-PDFs TMD-FFshard scattering



there are 8 independent TMD-PDFs

f�q
1T (x,k2

�) correlate k⊥ of quark with ST of proton (Sivers)

h�q
1 (x,k2

�) correlate k⊥ and sT of quark (Boer-Mulders) 

 

h�q
1L (x,k2

�)g�q
1T (x,k2

�) h�q
1T (x,k2

�)
different double-spin correlations  

gq
1L(x,k2

�)

fq
1 (x,k2

�)

hq
1T (x,k2

�)

correlate sL of quark with SL of proton 
unintegrated helicity distribution 

correlate sT of quark with ST of proton 
unintegrated transversity  distribution 

unpolarized quarks in unpolarized protons 
unintegrated unpolarized distribution 

only these survive in the collinear limit 



TMD-FFs give the number density of hadrons, with 
their momentum, originated in the fragmentation of a 

fast moving parton, with its spin.

X

“Collins effect”sq · (pq ⇥ p�)

there are 2 independent TMD-FFs for spinless hadrons

Dq
1(z,p2

?) unpolarized hadrons in unpolarized quarks 
unintegrated fragmentation function 

H?q
1 (z,p2

?) correlate p⊥ of hadron with sT of quark (Collins)
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Figure 1: Illustration of kinematics, especially the azimuthal angles, for SIDIS in the target
rest frame [6]. P hT and ST are the transverse parts of P h and S with respect to the photon
momentum q = l − l′.

notation of [6], one has

dσ

dx dy dφS dz dφh dP 2
hT

∝
{

FUU,T + ε cos(2φh)F cos 2φh

UU

+ S‖ ε sin(2φh)F sin 2φh

UL + S‖ λe

√

1 − ε2 FLL

+ |S⊥|
[

sin(φh − φS)F sin(φh−φS)
UT,T + ε sin(φh + φS)F sin(φh+φS)

UT

+ ε sin(3φh − φS)F sin(3φh−φS)
UT

]

+ |S⊥|λe

√

1 − ε2 cos(φh − φS)F cos(φh−φS)
LT + . . .

}

. (8)

In Eq. (8), ε is the degree of longitudinal polarization of the virtual photon which can
be expressed through y [15, 6], S‖ denotes longitudinal target polarization, and λe is the
lepton helicity. The structure functions FX,Y (X,Y refer to the lepton and the nucleon,
respectively: U = unpolarized; L, T = longitudinally, transversely polarized) merely depend
on x, z, and PhT . By choosing specific polarization states and weighing with the appropriate
azimuthal dependence, one can extract each structure function in (8) as past experiments
have already unambiguously shown.

For TMD studies one is interested in the kinematical region defined by

PhT # ΛQCD $ Q , (9)

for which the structure functions can be written as certain convolutions of TMDs. In this
region, the components in Eq. (8) appear at leading order when expanding the cross section
in powers of 1/Q, while additional ones show up at subleading order [1, 15, 6, 16]. Measuring
the structure functions in Eq. (8) allows one to obtain information on all eight leading quark
TMDs. To be specific, one has (for a spinless final state hadron) [6, 16],

FUU ∼
∑

q

e2
q f q

1 ⊗ Dq
1 F cos(φ−φS)

LT ∼
∑

q

e2
q gq

1T ⊗ Dq
1 (10)

FLL ∼
∑

q

e2
q gq

1L ⊗ Dq
1 F sin(φ−φS)

UT ∼
∑

q

e2
q f⊥q

1T ⊗ Dq
1 (11)

F cos(2φ)
UU ∼

∑

q

e2
q h⊥q

1 ⊗ H⊥q
1 F sin(φ+φS)

UT ∼
∑

q

e2
q hq

1T ⊗ H⊥q
1 (12)
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SSA in hadronic processes: TMDs, higher-twist correlations?
Two main different (?) approaches

1. Generalization of collinear scheme 
(assuming factorization)

Field-Feynman
M.A., M. Boglione, U. D’Alesio, E. Leader, S. Melis, F. Murgia, A. Prokudin, ...

a b

c
X

X

�̂

single spin effects in TMDs



TMD factorization 

factorization assumed 

TMD - PDF 

TMD - PDF 

TMD - FF non planar 
pQCD 

dynamics

non planar 
pQCD 

dynamics

(talk by C. Pisano for way of probing TMDs through 
azimuthal distribution of pions inside a jet) 



Phenomenology - TMD factorization

d�⇥ � d�⇤ ⇥ E� d� p�� X

d3p�

� E� d� p�� X

d3p�

= [d�⇥ � d�⇤]Sivers + [d�⇥ � d�⇤]Collins

AN =
d�� � d�⇥

d�� + d�⇥
main contribution from Sivers 

and Collins effects

[d⇤⇥ � d⇤⇤]Sivers =
�

qa,b,qc,d

⇥
dxa dxb dz

16 ⇥2 xa xb z2s
d2k⌅a d2k⌅b d3p⌅ �(p⌅ · p̂c) J(p⌅) �(ŝ + t̂ + û)

⇤ �Nfa/(xa, k⌅a) cos ⌅a

⇤ fb/p(xb, k⌅b)
1
2

⇤
|M̂0

1 |2 + |M̂0
2 |2 + |M̂0

3 |2
⌅

ab�cd
D�/c(z, p⌅)

Sivers phase

negligible contributions from other TMDs

[d⇤⇥ � d⇤⇤]Collins =
�

qa,b,qc,d

⇥
dxa dxb dz

16 ⇥2 xa xb z2s
d2k⌅a d2k⌅b d3p⌅ �(p⌅ · p̂c) J(p⌅) �(ŝ + t̂ + û)

⇤ �T qa(xa, k⌅a) cos(⌅a + ⇧1 � ⇧2 + ⌅H
� )

⇤ fb/p(xb, k⌅b)
⇤
M̂0

1 M̂0
2

⌅

qab�qcd
�ND�/qc

(z, p⌅)

   Collins + scattering 
phases
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FIG. 1: Scan band (i.e. the envelope of possible values) for the Collins contribution to the charged pion single spin asymmetries
AN , as a function of xF at two different scattering angles, compared with the corresponding BRAHMS experimental data [35].
The shaded band is generated, adopting the GRV98 and GRSV2000 sets of collinear PDFs, the Kretzer FF set and an
“unpolarized-like” evolution for the Collins function, following the procedure explained in the text.
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FIG. 2: Scan band (i.e. the envelope of possible values) for the Collins contribution to the neutral pion single spin asymmetry
AN , as a function of xF at two different rapidity values, compared with the corresponding STAR experimental data [34]. The
shaded band is generated, adopting the GRV98 and GRSV2000 sets of collinear PDFs, the Kretzer FF set and an “unpolarized-
like” evolution for the Collins function, following the procedure explained in the text.

In Fig. 1 the scan band for AN , as a function of xF at fixed scattering angles, is shown for charged pions and
BRAHMS kinematics, while in Fig. 2 the same result is given, at fixed rapidity values, for neutral pions and STAR
kinematics; analogous results, as a function of PT at several fixed xF values, are shown for STAR kinematics in Fig. 3.

These results allow to draw some first qualitative conclusions:

• The Collins contribution to AN is not as tiny as claimed in Ref. [1];

• The Collins effect alone might in principle be able to explain the BRAHMS charged pion results on AN in the
full kinematical range so far explored;
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kinematics; analogous results, as a function of PT at several fixed xF values, are shown for STAR kinematics in Fig. 3.

These results allow to draw some first qualitative conclusions:

• The Collins contribution to AN is not as tiny as claimed in Ref. [1];

• The Collins effect alone might in principle be able to explain the BRAHMS charged pion results on AN in the
full kinematical range so far explored;
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Problems at xF ≳ 0.3 
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STAR
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E. Leader, S. Melis, F. Murgia, 
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No indication of falling A
N 

as p
T

as opposed to twist-3 expectations

π0 A
N
 vs p
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Forward rapidity hadron production

isolation cones

even PT dependence of latest STAR data 
could be explained

U. D’Alesio



2. Higher-twist partonic correlations    
(Efremov, Teryaev, Ratcliffe; Qiu, Sterman; Kouvaris, Vogelsang, 
Yuan; Bacchetta, Bomhof, Mulders, Pijlman; Koike; Gamberg, Kang) 

d�� ⇥
�

a,b,c

Ta(k1, k2,S⇥)� fb/B(xb)�Hab�c(k1, k2)�Dh/c(z)

twist-3 functions hard interaction, 
not a cross section

higher-twist partonic correlations - factorization OK  

(Ta � f�(1)
1T )

possible project: compute Ta using SIDIS extracted Sivers functions 



fits of E704 and STAR data 
Kouvaris, Qiu, Vogelsang, Yuan



sign mismatch 
(Kang, Qiu, Vogelsang, Yuan) 

4

into non-perturbative PDFs, FFs, or the correlation functions. Consequently, unlike for the TMD distributions, all
field operators defining the non-perturbative functions in the collinear factorization approach are evaluated at the
same light-cone separation with zero “+” and “⊥” components, as shown for example in Eq. (8).
Since the quark-gluon correlation functions in the collinear factorization approach have all their active partons’

transverse momenta integrated, these correlation functions can be related to k⊥-moments of the TMD parton distri-
bution functions. It was shown at the operator level [23, 33, 36] that the ETQS function Tq,F (x, x) is closely related
to the k⊥-moment of Sivers function:

gTq,F (x, x) = −
∫

d2k⊥
|k⊥|2

M
f⊥q
1T (x, k2⊥)|SIDIS (10)

where the subscript “SIDIS” emphasizes that the Sivers functions here are probed in the SIDIS process. We stress
again the importance of the sign convention for the coupling constant g in the definition of the gauge link. If the sign
convention used to define Tq,F (x, x) is different from that in the definition of f⊥q

1T (x, k2⊥), the difference will introduce
an extra factor “−1” in the relation between these two functions, so that there will be no minus sign on the right-hand
side of Eq. (10).
We emphasize that the operator definition in Eq. (8) does not completely fix the quark-gluon correlation function

Tq,F (x, x), unless the renormalization scheme is specified. As is well known from the case of ordinary PDFs, the matrix
element in Eq. (8) is ultraviolet (UV) divergent [39]. Like in the case of PDFs, the quark-gluon correlation function
is really defined in terms of the QCD factorization formalism. The leading UV divergent (the large k⊥) region of the
matrix element on the right-hand-side of Eq. (8) corresponds to the region of phase space with large parton virtuality,
and is required by factorization to be moved from the matrix element into the perturbatively calculated short-distance
functions. The removal or subtraction of the UV divergence is not unique, which leads to the factorization scheme
and scale (µ) dependence of the correlation functions Tq,F (x, x, µ) [40]. In this way, also the relation in Eq. (10) is
subject to the UV subtractions and the adopted factorization scheme, and hence not a unique identity. That said, the
relation (10) provides a natural “zeroth-order” connection between the Sivers and the ETQS functions. It plays an
important role in establishing the consistency between the TMD factorization approach and the collinear twist-three
quark-gluon correlation approach in the descriptions of the SSAs in SIDIS and the Drell-Yan process [33]. It also is a
useful starting point for phenomenological studies and is of much help in testing the various constraints on the quark
Sivers and quark-gluon correlation functions. In the following, we will therefore make use of relation (10), keeping
however in mind the caveats we have made regarding UV renormalization.

III. THE “SIGN MISMATCH”

The quark Sivers functions f⊥q
1T (x, k2⊥) (or equivalently, ∆Nfq/A↑(x, k⊥)) and the twist-3 quark-gluon correlation

functions Tq,F (x, x) have been extracted from experimental data on SSAs for single hadron production in SIDIS and
in hadron-hadron scattering, respectively. In this section, we compare the existing parameterizations of these two
functions and present our findings concerning the “sign mismatch”. We also introduce and discuss various loopholes
that might resolve the apparent inconsistency.

So far the quark Sivers functions have been extracted from the Asin(φh−φs)
UT azimuthal asymmetries in SIDIS. We

consider two such parametrizations here. One is from Ref. [10] (we refer it as “old Sivers”), the other one (“new Sivers”)
from Ref. [11] . They both parametrize the spin-averaged TMD PDFs f q

1 (x, k
2
⊥) and Sivers functions ∆Nfq/h↑(x, k⊥)

for each quark flavor q in the form

f q
1 (x, k

2
⊥) = f q

1 (x)g(k⊥), (11)

∆Nfq/h↑(x, k⊥) = 2Nq(x)f
q
1 (x)h(k⊥)g(k⊥), (12)

where f q
1 (x) is the quark’s spin-averaged collinear PDF,Nq(x) is a fitted function whose functional form is not relevant

for our discussion below, and g(k⊥) is assumed to have a Gaussian form,

g(k⊥) =
1

π〈k2⊥〉
e−k2

⊥/〈k2
⊥〉 (13)

with a fitting parameter 〈k2⊥〉 for the width. However, the two parameterizations adopt different functional forms for
the k⊥-dependence of the Sivers function:

old Sivers: h(k⊥) =
2k⊥M0

k2⊥ +M2
0

, (14)

new Sivers: h(k⊥) =
√
2e

k⊥
M1

e−k2
⊥/M2

1 , (15)

compare

as extracted from fitting AN data, with that obtained by 
inserting in the the above relation the SIDIS extracted 

Sivers functions

similar magnitude, but opposite sign!  
the same mismatch does not occur adopting TMD 

factorization; the reason is that the hard scattering part in 
higher-twist factorization is negative  

node in the Sivers function (Boer, Kang, Prokudin...)? 
Study it at large x values



d�D�Y =
�

a
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Drell-Yan processes - TMDs              

factorization holds, two scales, M2, and qT << M

p p

Q2 = M2

qT

qL

l+

l–

direct product of TMDs  
no fragmentation process



11

l′µCM =
1

2

















(

1 − sinα sin θCS cosφCS

)

q0,CM − cosα cos θCS qL,CM

qT − (cosα)−1 sin θCS cosφCS q

− sin θCS sinφCS q
(

1 − sinα sin θCS cosφCS

)

qL,CM − cosα cos θCS q0,CM

















. (54)

By means of these momenta one can carry out the contraction of the leptonic and the hadronic tensor in the
cm-frame. This is particularly convenient in connection with the parton model calculation in Section VI.

We close this section with a brief discussion on the hadron spin vectors. In the cm-frame one can write

Sµ
a,CM =

(

SaL,CM
|$Pa,CM |

Ma
, |$SaT,CM | cosφa,CM , |$SaT,CM | sinφa,CM , SaL,CM

P 0
a,CM

Ma

)

, (55)

Sµ
b,CM =

(

SbL,CM
|$Pb,CM |

Mb
, |$SbT,CM | cosφb,CM , |$SbT,CM | sinφb,CM , −SbL,CM

P 0
b,CM

Mb

)

, (56)

with the longitudinal components SaL,CM , SbL,CM , and the transverse components $SaT,CM , $SbT,CM . The condi-

tion S2
a = −1 implies (SaL,CM)2 +($SaT,CM )2 = 1 (and analogously for the hadron Hb). One can also write down,

e.g., Sµ
a in the CS-frame in terms of longitudinal and transverse components.4 Mainly for the following reason

we prefer, however, to work with components of the spin vectors in the cm-frame. If one has a pure transverse
polarization in the cm-frame (in the xz-plane), this implies also a longitudinal polarization component in the CS-
frame. Therefore, longitudinal and transverse polarization components can get mixed up when switching between
both frames. Since an experimental setup and also the parton model approximation have a closer connection to
the cm-frame than to the CS-frame it is preferable to work with cm-frame components of the hadron spin vectors.

V. ANGULAR DISTRIBUTION OF THE CROSS SECTION

By means of the general form of the hadronic tensor as derived in Section III one can now write down the full
angular distribution of the DY cross section. Since the hadronic tensor is frame-independent this can be done,
in principle, for any reference frame. We focus here on a dilepton rest frame because in that case the angular
distribution takes the most compact and transparent form. Expressing the orientation of the leptons through the
CS-angles θCS and φCS (see Eqs. (51), (52), and (53), (54)) and contracting the leptonic tensor in (5) with the
hadronic tensor one finds the following general form of the cross section in Eq. (10):

dσ

d4q dΩ
=

α2
em

F q2
×

{(

(1 + cos2 θ)F 1
UU + (1 − cos2 θ)F 2

UU + sin 2θ cosφF cos φ
UU + sin2 θ cos 2φF cos 2φ

UU

)

+ SaL

(

sin 2θ sinφF sin φ
LU + sin2 θ sin 2φF sin 2φ

LU

)

+ SbL

(

sin 2θ sinφF sin φ
UL + sin2 θ sin 2φF sin 2φ

UL

)

+ |$SaT |
[

sinφa

(

(1 + cos2 θ)F 1
TU + (1 − cos2 θ)F 2

TU + sin 2θ cosφF cos φ
TU + sin2 θ cos 2φF cos 2φ

TU

)

+ cosφa

(

sin 2θ sinφF sin φ
TU + sin2 θ sin 2φF sin 2φ

TU

)]

+ |$SbT |
[

sinφb

(

(1 + cos2 θ)F 1
UT + (1 − cos2 θ)F 2

UT + sin 2θ cosφF cos φ
UT + sin2 θ cos 2φF cos 2φ

UT

)

+ cosφb

(

sin 2θ sinφF sin φ
UT + sin2 θ sin 2φF sin 2φ

UT

)]

+ SaL SbL

(

(1 + cos2 θ)F 1
LL + (1 − cos2 θ)F 2

LL + sin 2θ cosφF cos φ
LL + sin2 θ cos 2φF cos 2φ

LL

)

4 The resulting expression looks a bit more complicated because !Pa,CS is not pointing in the z-direction.
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+ SaL |!SbT |
[

cosφb

(

(1 + cos2 θ)F 1
LT + (1 − cos2 θ)F 2

LT + sin 2θ cosφF cos φ
LT + sin2 θ cos 2φF cos 2φ

LT

)

+ sinφb

(

sin 2θ sinφF sin φ
LT + sin2 θ sin 2φF sin 2φ

LT

)]

+ |!SaT |SbL

[

cosφa

(

(1 + cos2 θ)F 1
TL + (1 − cos2 θ)F 2

TL + sin 2θ cosφF cos φ
TL + sin2 θ cos 2φF cos 2φ

TL

)

+ sinφa

(

sin 2θ sinφF sin φ
TL + sin2 θ sin 2φF sin 2φ

TL

)]

+ |!SaT | |!SbT |
[

cos(φa + φb)
(

(1 + cos2 θ)F 1
TT + (1 − cos2 θ)F 2

TT + sin 2θ cosφF cos φ
TT + sin2 θ cos 2φF cos 2φ

TT

)

+ cos(φa − φb)
(

(1 + cos2 θ) F̄ 1
TT + (1 − cos2 θ) F̄ 2

TT + sin 2θ cosφ F̄ cos φ
TT + sin2 θ cos 2φ F̄ cos 2φ

TT

)

+ sin(φa + φb)
(

sin 2θ sinφF sin φ
TT + sin2 θ sin 2φF sin 2φ

TT

)

+ sin(φa − φb)
(

sin 2θ sinφ F̄ sin φ
TT + sin2 θ sin 2φ F̄ sin 2φ

TT

)]}

. (57)

In Eq. (57) 48 structure functions show up which exactly matches with the number of the Vi defined in Section III.
The structure functions again depend on the three variables Pa ·q, Pb ·q, and q2, i.e., F 1

UU = F 1
UU (Pa ·q, Pb ·q, q2)

and so on. We refrain from giving the explicit relations between the structure functions in (57) and the Vi because
these lengthy formulae are not needed for the following discussion. In order to shorten the notation in (57) we left
out indices for the angles which characterize the lepton momenta and the transverse spin vectors of the hadrons.
There is yet another reason for omitting those indices: the form of the angular distribution in (57) holds for
any dilepton rest frame and not just the CS frame. The numerical values of the structure functions of course
change when going from one frame to another. Furthermore, note that the components of the spin vectors can be
understood in different frames like the rest frame of one of the hadrons, the cm-frame, or a dilepton rest frame.

In particular for the angular distribution of the unpolarized cross section different notations can be found in
the literature (see, e.g., [35] and references therein). Here we just quote the frequently used formula
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The socalled Lam-Tung relation [33, 34, 37]

λ + 2ν = 1 , (60)

which in terms of the structure functions defined in (57) reads

F 2
UU = 2 F cos 2φ

UU , (61)

has attracted considerable attention in the past. This relation is exact if one computes the DY process to
O(αs) in the standard collinear perturbative QCD framework. Even at O(α2

s) the numerical violation of (60) is
small [38]. On the other hand data for π− N → µ− µ+ X taken at CERN [39, 40] and at Fermilab [41] are in
disagreement with the Lam-Tung relation. In particular, an unexpectedly large cos 2φ modulation of the cross
section was observed, and in the meantime different explanations for this phenomenon have been put forward in
the literature [42, 43, 44, 45, 46, 47, 48]. In Ref. [31] it was pointed out that intrinsic transverse motion of initial
state partons might be responsible for the observed violation of the Lam-Tung relation. In the following section
we will briefly return to this point in connection with the parton model calculation. It is also worthwhile to
mention that more recent Fermilab data on proton-deuteron Drell-Yan do agree with the Lam-Tung relation [49].

The hadronic tensor given in Section III also allows one to find the angular distribution of the cross section for
the specific kinematical point qT = 0. Altogether, in that case one has nine independent angular dependences
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cross-section: most general pp leading-twist expression 
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Predictions for AN 
Sivers functions as extracted  from SIDIS data, with opposite sign 

M.A., M. Boglione, U. D’Alesio, S. Melis, F. Murgia, A. Prokudin, e-Print: arXiv:0901.3078 
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AN: a simple, unexpected, single spin asymmetry
measured in many experiments

its understanding is not easy and reveals subtle 
aspects of QCD dynamics

a global study of transverse spin asymmetries in 
SIDIS, large PT and D-Y processes should lead 

to a better knowledge of the 3-dimensional 
nucleon structure 
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