Physics at A Fixed Target ExpeRiment (AFTER) using the LHC beams ECT*, Trento - Feb. 4 - 13, 2013

 $S \cdot (P \times P_h)$

- an experimental perspective -

Iargely neglected

- Iargely neglected
- "transverse spin" structure function g₂ small (and vanishing) in parton model

Iargely neglected

- "transverse spin" structure function g2 small (and vanishing) in parton model
- transverse-spin effects suppressed in pQCD:

$$\mathbf{A_N} \propto lpha_{\mathbf{S}} rac{\mathbf{m_q}}{\mathbf{Q^2}}$$

VOLUME 41, NUMBER 25

PHYSICAL REVIEW LETTERS

18 December 1978

Transverse Quark Polarization in Large- p_T Reactions, e^+e^- Jets, and Leptoproduction: A Test of Quantum Chromodynamics

G. L. Kane Physics Department, University of Michigan, Ann Arbor, Michigan 48109

and

J. Pumplin and W. Repko Physics Department, Michigan State University, East Lansing, Michigan 48823

Iargely neglected

- "transverse spin" structure function g₂ small (and vanishing) in parton model
- transverse-spin effects suppressed in pQCD:

$${f A_N} \propto lpha_S {{f m_q}\over Q^2}$$
 — quark mass energy scale

VOLUME 41, NUMBER 25

PHYSICAL REVIEW LETTERS

18 December 1978

Transverse Quark Polarization in Large- p_T Reactions, e^+e^- Jets, and Leptoproduction: A Test of Quantum Chromodynamics

G. L. Kane Physics Department, University of Michigan, Ann Arbor, Michigan 48109

and

J. Pumplin and W. Repko Physics Department, Michigan State University, East Lansing, Michigan 48823

Iargely neglected

- "transverse spin" structure function g₂ small (and vanishing) in parton model
- transverse-spin effects suppressed in pQCD:

$$\mathbf{A_N} \propto \alpha_{\mathbf{S}} \frac{\mathbf{m_q}}{\mathbf{Q^2}} \longleftarrow \text{ quark mass}$$

Volume 41, Number 25

PHYSICAL REVIEW LETTERS

18 December 1978

Transverse Quark Polarization in Large- p_T Reactions, e^+e^- Jets, and Leptoproduction: A Test of Quantum Chromodynamics

G. L. Kane Physics Department, University of Michigan, Ann Arbor, Michigan 48109

and

J. Pumplin and W. Repko Physics Department, Michigan State University, East Lansing, Michigan 48823

Nature does not seem to cooperate

... also not for pion production ...

... also not for pion production ...

- Only two models consistently describing the data:
 * TMDs (Transverse Momentum Dependent) distributions
 * high-twist correlations
- Interpretation not yet completely satisfactor
- All available models predict A_N goes to zero at high a values.
- **BU** p stype DATA p such kinematic region.....
- all available data coming from pap scattering

... also not for pion production ...

- Only two models consistently describing the data: * TMDs (Transverse Momentum Dependent) distributions * high-twist correlations π^+
- Interpretation not yet completely satisfactor
- All available models predict A_N goes to zero at high a values.
- all available data coming from pap scattering

 large left-right asymmetries persist even to RHIC energies

what's the origin of these SSA?

fragmentation effect?

correlating transverse quark spin

with transverse momentum

G. Schnell - UPV/EHU

what's the origin of these SSA?

fragmentation effect?

[J.C. Collins, NPB 396 (1993) 161]

 correlating transverse quark spin with transverse momentum
 G. Schnell - UPV/EHU

what's the origin of these SSA?

fragmentation effect?

[J.C. Collins, NPB 396 (1993) 161]

 correlating transverse quark spin with transverse momentum
 G. Schnell - UPV/EHU

quark-distribution effect?

[D.W. Sivers, PRD 41 (1990) 83]

 correlating transverse quark momentum with transverse spin of nucleon
 AFTER'13 - ECT*

Transverse spin

$$\begin{split} |\uparrow\downarrow\rangle &= \frac{1}{2} \left(|+\rangle\pm|-\rangle\right) \\ \langle\uparrow| \ \hat{O} \ |\uparrow\rangle - \langle\downarrow| \ \hat{O} \ |\downarrow\rangle \propto \langle+| \ \hat{O} \ |-\rangle - \langle-| \ \hat{O} \ |+\rangle \end{split}$$

transverse-spin involves helicity flip

Transverse spin

$$\begin{split} |\uparrow\downarrow\rangle &= \frac{1}{2} \left(|+\rangle \pm |-\rangle \right) \\ \langle\uparrow| \ \hat{O} \ |\uparrow\rangle - \langle\downarrow| \ \hat{O} \ |\downarrow\rangle \propto \langle+| \ \hat{O} \ |-\rangle - \langle-| \ \hat{O} \ |+\rangle \\ \\ \textbf{transverse-spin involves helicity flip} \end{split}$$

Transverse spin $\left|\uparrow\downarrow\right\rangle = \frac{1}{2}\left(\left|+\right\rangle\pm\left|-\right\rangle\right)$ $\langle \uparrow | \hat{O} | \uparrow \rangle - \langle \downarrow | \hat{O} | \downarrow \rangle \propto \langle + | \hat{O} | - \rangle - \langle - | \hat{O} | + \rangle$ transverse-spin involves helicity flip $h_1^q =$ $g_1^q = \bigcirc \rightarrow$ **PDFs:** f_1^q = $h_1 =$ + + /

Transverse spin $\left|\uparrow\downarrow\right\rangle = \frac{1}{2}\left(\left|+\right\rangle\pm\left|-\right\rangle\right)$ $\langle \uparrow | \hat{O} | \uparrow \rangle - \langle \downarrow | \hat{O} | \downarrow \rangle \propto \langle + | \hat{O} | - \rangle - \langle - | \hat{O} | + \rangle$ transverse-spin involves helicity flip $g_1^q = \bigcirc \rightarrow - ($ $h_1^q =$ **PDFs:** f_1^q = **STOP** + +

need to couple to chiral-odd fragmentation function, i.e., dependent on transverse quark-spin G. Schnell - UPV/EHU AFTER'13 - ECT*

quark polarimetry

quark polarimetry

need additional "polarimeter" for transversely polarized quarks

G. Schnell - UPV/EHU

time reversal: spin & momentum directions change sign

- if $\sigma \sim S \cdot (k \times P_{h\perp})$ then (time-reversal invariance): $\sigma \sim -S \cdot (k \times P_{h\perp})$
- $\sigma \stackrel{?}{\equiv} 0 \implies SSA require interference effects!$

Transverse SSA and time reversal

- non-vanishing $S \cdot (k \times P_{h\perp})$ structure requires interference of amplitudes (initial- of final-state interactions) with different imaginary parts
- fragmentation functions involve interference of many amplitudes/channels:
- can those interfere constructively and produce such large effects?
 (especially at high energies, when many particles can be produced)
- what about leading-twist parton distribution functions?

Quark distributions

distribution function in handbag representation:

No interference m no T-odd DF possible!?

Quark distributions

distribution function in handbag representation:

[S. Brodsky et al., Phys. Lett. B530, 99 (2002)]

- interference of amplitudes with different numbers of softgluon exchanges possible (not 1/Q suppressed!)
- gluons needed for color gauge invariance
- represent color field of remnant seen by outgoing quark

involves transverse momentum -> going beyond collinear fact.
 G. Schnell - UPV/EHU
 AFTER'13 - ECT*

April 16, 2009

April 16, 2009: transverse-momentum-dependent distributions

G. Schnell - UPV/EHU

April 16, 2009: transverse-momentum-dependent distributions

April 16, 2009: transverse-momentum-dependent distributions

Spin-Momentum Structure of the Nucleon

$$\frac{1}{2} \operatorname{Tr} \left[\left(\gamma^{+} + \lambda \gamma^{+} \gamma_{5} \right) \Phi \right] = \frac{1}{2} \left[f_{1} + S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + \lambda \Lambda g_{1} + \lambda S^{i} k^{i} \frac{1}{m} g_{1T} \right]$$

$$\frac{1}{2} \operatorname{Tr} \left[\left(\gamma^{+} - s^{j} i \sigma^{+j} \gamma_{5} \right) \Phi \right] = \frac{1}{2} \left[f_{1} + S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + s^{i} \epsilon^{ij} k^{j} \frac{1}{m} h_{1}^{\perp} + s^{i} S^{i} h_{1} \right]$$

$$+ s^{i} (2k^{i}k^{j} - \mathbf{k}^{2}\delta^{ij})S^{j} \frac{1}{2m^{2}} h_{1T}^{\perp} + \Lambda s^{i}k^{i} \frac{1}{m} h_{1L}^{\perp}$$

- each TMD describes a particular spinmomentum correlation
- functions in black survive integration over transverse momentum
- functions in green box are chirally odd
- functions in red are naive T-odd

Spin-Momentum Structure of the Nucleon

$$\frac{1}{2} \operatorname{Tr} \left[(\gamma^{+} + \lambda \gamma^{+} \gamma_{5}) \Phi \right] = \frac{1}{2} \left[f_{1} + S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + \lambda \Lambda g_{1} + \lambda S^{i} k^{i} \frac{1}{m} g_{1T} \right]$$

$$\frac{1}{2} \operatorname{Tr} \left[(\gamma^{+} - s^{j} i \sigma^{+j} \gamma_{5}) \Phi \right] = \frac{1}{2} \left[f_{1} + S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + s^{i} \epsilon^{ij} k^{j} \frac{1}{m} h_{1}^{\perp} + s^{i} S^{i} h_{1} \right]$$

helicity

U

L

Т

nucleon pol.

Sivers

U

 f_1

 f_{1T}^{\perp}

quark pol.

L

 g_{1L}

 g_{1T}

Т

 h_1^{\perp}

 h_{1L}^{\perp}

 $h_1,\,h_{1T}^\perp$

transversity

$$+ s^{i} (2k^{i}k^{j} - \mathbf{k}^{2}\delta^{ij})S^{j} \frac{1}{2m^{2}} \mathbf{h}_{1T}^{\perp} + \Lambda s^{i}k^{i} \frac{1}{m} \mathbf{h}_{1L}^{\perp}$$

Boer-Mulders rrelation

 functions in black survive integration over transverse momentum

green box are chirally odd

pretzelosity
 TUNCTIONS IN red are naive T-odd

TMD fragmentation functions

similarly characterize hadronization process:

TMD fragmentation functions

similarly characterize hadronization process:

relevant for unpolarized final state

TMD fragmentation functions

similarly characterize hadronization process:

Collins fctn. - chiral-odd fragmentation

Collins fctn. - chiral-odd fragmentation

Collins fctn. - chiral-odd fragmentation

- transverse-spin dependence in fragmentation
- left-right asymmetry in hadron direction transverse to both quark spin and momentum

Collins fctn. - chiral-odd fragmentation

- transverse-spin dependence in fragmentation
- left-right asymmetry in hadron direction transverse to both quark spin and momentum
- extracted from SIDIS and e⁺e⁻ annihilation data

Collins fctn. - chiral-odd fragmentation

Probing TMDs in semi-inclusive DIS

quark pol.

		U	L	Т
pol.	U	f_1		h_1^\perp
leon	L		g_{1L}	h_{1L}^{\perp}
nuc]	Т	f_{1T}^{\perp}	g_{1T}	$h_1, \ h_{1T}^{\perp}$

1-Hadron production ($ep \rightarrow ehX$)

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3} + S_{L} \left\{ \sin 2\phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right] \right\} + S_{T} \left\{ \sin(\phi - \phi_{S}) \, d\sigma_{UT}^{8} + \sin(\phi + \phi_{S}) \, d\sigma_{UT}^{9} + \sin(3\phi - \phi_{S}) \, d\sigma_{UT}^{10} + \frac{1}{Q} \left(\sin(2\phi - \phi_{S}) \, d\sigma_{UT}^{11} + \sin \phi_{S} \, d\sigma_{UT}^{12} \right) + \lambda_{e} \left[\cos(\phi - \phi_{S}) \, d\sigma_{LT}^{13} + \frac{1}{Q} \left(\cos \phi_{S} \, d\sigma_{LT}^{14} + \cos(2\phi - \phi_{S}) \, d\sigma_{LT}^{15} \right) \right] \right\}$$

Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197 Boer and Mulders, Phys. Rev. D 57 (1998) 5780 Bacchetta et al., Phys. Lett. B 595 (2004) 309 Bacchetta et al., JHEP 0702 (2007) 093 "Trento Conventions", Phys. Rev. D 70 (2004) 117504 17 AFTER'13 - ECT*

1-Hadron production ($ep \rightarrow ehX$)

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3}$$

$$+S_{L} \left\{ \sin 2\phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right] \right\}$$

$$+S_{T} \left\{ \sin(\phi - \phi_{S}) \, d\sigma_{UT}^{8} + \sin(\phi + \phi_{S}) \, d\sigma_{UT}^{9} + \sin(3\phi - \phi_{S}) \, d\sigma_{UT}^{10} \right\}$$

$$+\frac{1}{Q} \left(\sin(2\phi - \phi_{S}) \, d\sigma_{UT}^{11} + \sin \phi_{S} \, d\sigma_{UT}^{12} \right)$$

$$+\lambda_{e} \left[\cos(\phi - \phi_{S}) \, d\sigma_{UT}^{13} \right] + \frac{1}{Q} \left(\cos \phi_{S} \, d\sigma_{LT}^{14} + \cos(2\phi - \phi_{S}) \, d\sigma_{LT}^{15} \right) \right] \right\}$$
Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197
Boer and Mulders, Phys. Rev. D 57 (1998) 5780
Bacchetta et al., Phys. Lett. B 595 (2004) 309
Bacchetta et al., JHEP 0702 (2007) 093
"Trento Conventions", Phys. Rev. D 70 (2004) 117504

B

AFTER'13 - ECT*

1-Hadron production ($ep \rightarrow ehX$)

$$d\sigma = \left(\frac{d\sigma_{UU}^{0}}{d\sigma_{UU}^{0}} + \frac{1}{\cos 2\phi} d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi d\sigma_{LU}^{3} \right)$$

$$+S_{L} \left\{ \sin 2\phi d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi d\sigma_{LL}^{7} \right] \right\}$$

$$+S_{T} \left\{ \sin(\phi - \phi_{S}) d\sigma_{UT}^{8} + \sin(\phi + \phi_{S}) d\sigma_{UT}^{9} + \sin(3\phi - \phi_{S}) d\sigma_{UT}^{10} \right\}$$

$$+\frac{1}{Q} \left(\sin(2\phi - \phi_{S}) d\sigma_{UT}^{11} + \sin \phi_{S} d\sigma_{UT}^{12} \right)$$

$$+\lambda_{e} \left[\cos(\phi - \phi_{S}) d\sigma_{TT}^{13} \right] + \frac{1}{Q} \left(\cos \phi_{S} d\sigma_{LT}^{14} + \cos(2\phi - \phi_{S}) d\sigma_{LT}^{15} \right) \right] \right\}$$
Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197
Boer and Mulders, Phys. Rev. D 57 (1998) 5780
Bacchetta et al., Phys. Lett. B 595 (2004) 309
Bacchetta et al., JHEP 0702 (2007) 093
"Trento Conventions", Phys. Rev. D 70 (2004) 117504

Azimuthal spin asymmetries

Azimuthal spin asymmetries

Fit azimuthal modulations, e.g., using Max.Likelihood:

 $PDF(2\langle\sin(\phi\pm\phi_S)\rangle_{UT},\ldots,\phi,\phi_S) = \frac{1}{2}\{1+P_T(2\langle\sin(\phi\pm\phi_S)\rangle_{UT}\sin(\phi\pm\phi_s)+\ldots)\}$

G. Schnell - UPV/EHU

The COMPASS experiment @ CERN

The quest for transversely polarized quarks

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

transversity distribution (Collins fragmentation)

- significant in size and opposite in sign for charged pions
- disfavored Collins FF large and opposite in sign to favored one

 leads to various cancellations in SSA observables

Non-zero transversity Non-zero Collins function

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Collins amplitudes

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

kaon Collins amplitudes

- similar behavior for pions
- similar behavior for K⁺
- different trend for K⁻

opposite sign conventions!)

G. Schnell - UPV/{

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

 $A_{UT} \sim \sin(\phi_{R\perp} + \phi_S) \sin\theta h_1 H_1^{\triangleleft}$

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

G. Schnell - UPV/EHU

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

HERMES: pion pairs COMPASS: hadron pairs

(for comparison need to correct for depolarization factor and sign change)

²H results consistent with $ze to^{0.00}$

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

- HERMES: pion pairs COMPASS: hadron pairs
 - (for comparison need to correct for depolarization factor and sign change)
- ²H results consistent with zero

[C. Adolph et al., PLB 713 (2012) 10]

results from e⁺e⁻ by BELLE allow
 first (collinear) extraction of transversity
 (compared to Anselmino et al.)

transversity extraction

ersity from Proton data Transversity from Deuteron data

• combining SIDIS (COMPASS & HERMES) and e^+e^- data (BELLE):

- promising agreement between collinear and TMD extraction of transversity
- no obvious sign of difference in TMD (Collins) from collinear (dihadron) FF evolution

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, {h_{1T}^\perp}$

Pretzelosity

- chiral-odd >> needs Collins FF (or similar)
- leads to sin(3 ϕ ϕ_s) modulation in A_{UT}
- proton and deuteron data consistent with zero
- cancelations? pretzelosity=zero? or just the additional suppression by two powers of $P_{h\perp}$

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

- chiral-odd >> needs Collins FF (or similar)
- leads to sin(3 ϕ ϕ_s) modulation in A_{UT}
- proton and deuteron data consistent with zero
- cancelations? pretzelosity=zero? or just the additional suppression by two powers of P_{h⊥}

Sivers effect

naively T-odd distributions "Wilson-line physics"

Sivers effect

naively T-odd distributions "Wilson-line physics"

Boer-Mulders effect

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Sivers function

e e current quark jet final state interaction spectator system 11-2001 8624A06 [S. Brodsky et al., Phys. Lett. B530, 99 (2002)]

naive T-odd

- requires FSI via nonperturbative gluon exchange(s) ("Wilson line")
- leads to opposite sign in DIS and Drell-Yan (firm QCD prediction!)
- relation to GPD E + FSI yields opposite signs of Sivers fct. for up and down quarks
 Schnell - UPV/EHU

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Sivers function

[S. Brodsky et al., Phys. Lett. B530, 99 (2002)]

naive T-odd

- requires FSI via nonperturbative gluon exchange(s) ("Wilson line")
- leads to opposite sign in DIS and Drell-Yan (firm QCD prediction!)
- relation to GPD E + FSI yields opposite signs of Sivers fct. for up and down quarks
 Schnell - UPV/EHU

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, rac{h_{1T}^\perp}{}$

Sivers amplitudes for pions

 $2\langle \sin(\phi - \phi_S) \rangle_{\rm UT} = -\frac{\sum_q e_q^2 f_{1T}^{\perp,q}(x, p_T^2) \otimes_{\mathcal{W}} D_1^q(z, k_T^2)}{\sum_q e_q^2 f_1^q(x, p_T^2) \otimes D_1^q(z, k_T^2)}$

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, \frac{h_{1T}^\perp}{h_{1T}}$

Sivers amplitudes for pions $2\langle \sin(\phi - \phi_S) \rangle_{\rm UT} = -\frac{\sum_q e_q^2 f_{1T}^{\perp,q}(x, p_T^2) \otimes_{\mathcal{W}} D_1^q(z, k_T^2)}{\sum_q e_q^2 f_1^q(x, p_T^2) \otimes D_1^q(z, k_T^2)}$

 π^+ dominated by u-quark scattering:

 $\simeq - \frac{f_{1T}^{\perp,u}(x,p_T^2) \otimes_{\mathcal{W}} D_1^{u \to \pi^+}(z,k_T^2)}{f_1^u(x,p_T^2) \otimes D_1^{u \to \pi^+}(z,k_T^2)}$

u-guark Sivers DF < 0

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, \frac{h_{1T}^\perp}{h_{1T}}$

Sivers amplitudes for pions $2\langle \sin(\phi - \phi_S) \rangle_{\rm UT} = -\frac{\sum_q e_q^2 f_{1T}^{\perp,q}(x, p_T^2) \otimes_{\mathcal{W}} D_1^q(z, k_T^2)}{\sum_q e_q^2 f_1^q(x, p_T^2) \otimes D_1^q(z, k_T^2)}$

 π^+ dominated by u-quark scattering:

 $\simeq - \frac{f_{1T}^{\perp,u}(x,p_T^2) \otimes_{\mathcal{W}} D_1^{u \to \pi^+}(z,k_T^2)}{f_1^u(x,p_T^2) \otimes D_1^{u \to \pi^+}(z,k_T^2)}$

u-guark Sivers DF < 0

d-quark Sivers DF > 0 (cancelation for π^{-})

~ ·	r	•
Sivers	tunc	tion

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, {oldsymbol{h}}_{1T}^\perp$

cancelation for D target supports opposite signs of up and down Sivers

Ci	C	•
Sivers	tunc	TIO

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

G. Schnell - UPV/EHU

- cancelation for D target supports opposite signs of up and down Sivers
- new results from JLab using ³He target and from COMPASS for proton target

AFTER'13 - ECT*
C ·	C I	•
Sivers	tunc	rion

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

- cancelation for D target supports opposite signs of up and down Sivers
- new results from JLab using ³He target and from COMPASS for proton target

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, {oldsymbol{h}}_{1T}^\perp$

Sivers amplitudes

smaller h⁺ amplitudes seen by COMPASS

Boer-Mulders the other naive-T-odd distribution

Boer-Mulders

the other naive-T-odd distribution

Modulations in spin-independent SIDIS cross section

$$\frac{\alpha^2}{xyQ^2} \left\{ 1 + \frac{\gamma^2}{2x} \right\} \left\{ A(y) F_{\text{UU},\text{T}} + B(y) F_{\text{UU},\text{L}} + C(y) \cos \phi_h F_{\text{UU}}^{\cos \phi_h} + B(y) \cos 2\phi_h F_{\text{UU}}^{\cos 2\phi_h} \right\}$$

G. Schnell - UPV/EHU

Cahn effect only does not describe data

- Cahn effect only does not describe data
- opposite sign for charged pions with larger magnitude for π^- (as expected)
 - -> same-sign BM-function for valence quarks

- Cahn effect only does not describe data
- opposite sign for charged pions with larger magnitude for π^- (as expected)
 - -> same-sign BM-function for valence quarks
- intriguing behavior for kaons

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

Signs of Boer-Mulders

preliminary results by COMPASS confirm non-vanishing cosine modulations

transverse spin in hadron collisions

process dependence of T-odd TMDs

simple QED example

Drell-Yan: repulsive

process dependence of T-odd TMDs

simple QED example

add color:

QCD

not explainable using collinear pQCD

- not explainable using collinear pQCD
- possible source: Boer-Mulders effect

- possible source: Boer-Mulders effect^{6.4}
- much smaller effect for pp and pd DY valence BM effect?

0.2

0.5

1.5

p_τ (GeV/c)

2.5

3

3.5

AFTER'13 - ECT*

66

PRL

E866, I

AFTERIS - ECT*

 $ep^{\uparrow} \to hX$

scattered lepton undetected
 lepton kinematics unknown

 $ep^{\uparrow} \to hX$

- scattered lepton undetected
 lepton kinematics unknown
- dominated by quasi-real photo-production (low Q²)
 hadronic component of photon relevant

- scattered lepton undetected
 lepton kinematics unknown
- dominated by quasi-real photo-production (low Q²)
 hadronic component of photon relevant
- cross section proportional to $S_N (k \times p_h) \sim \sin \phi$

5 analyses at HERMES allow. The same ingestion (Tupwards of the nwards) direction (\uparrow upwards or \downarrow downwards) lepton undetected $\mathcal{F}_{P}^{\uparrow(\downarrow)} d\mathcal{O}_{T}$ $\Omega(p_T, n_F, \phi)$ pinfdireguign $= d^3 \sigma_{UU}$ $L_{P}^{\uparrow(\downarrow)}$ mber die versprechts mand, . The complete analysis rmed in thirdgonic and ponent of (2.2)set of data a Decree (P120 FASHOR tracks), 2 Fmach finer binning ph ison to what other (SL) DIS analyses At_p HERMES allow. The same (2.2)apre and interpretation er. See a the 2D analysis, see section 4.2. (2.2)eld for a given target spin direction († upwards or) wards) $\operatorname{mmetry} A_{\mathcal{A}_{\mathcal{W}}}(p_{\mathcal{A}_{\mathcal{W}}}x_F,\phi) =$

$$\frac{\mathrm{d}^{3}N^{\uparrow(\downarrow)}}{\mathrm{d}p_{T} \mathrm{d}x_{F} \mathrm{d}\phi^{2}.4} A_{UT}^{\sin\phi}(p_{T}, x_{F}) \sin\phi} \left[L^{\uparrow(\downarrow)} \mathrm{d}^{3}\sigma_{UU} + (-)L_{P}^{\uparrow(\downarrow)} \mathrm{d}^{3}\sigma_{UT} \right] \Omega(p_{T}, x_{F}, \phi)$$

23

AFTER'13 - ECT*

The same of the state of the same sention 4.2. The second wards of the second in the second of the second $L_{P}^{\uparrow\uparrow\uparrow} A_{UT}^{\downarrow\uparrow\uparrow}(p_{T}, x_{F}^{\uparrow}) \sin \phi + P_{P}^{\uparrow\uparrow}(p_{T}, x_{F}^{\uparrow\uparrow\downarrow}) d^{3}\sigma_{UT} \phi^{\uparrow}(p_{T}, x_{F}^{\uparrow}) \sin \phi + P_{P}^{\uparrow\uparrow}(p_{T}, x_{F}^{\uparrow\uparrow\uparrow}) \sin \phi^{\uparrow}(p_{T}, x_{F}^{\uparrow\uparrow}) \sin \phi^{\uparrow}(p_{T}, x_{F}^{\downarrow\uparrow}) \sin \phi^{\uparrow}(p_{T}, x_{F}^{\downarrow\uparrow}) \sin \phi^{\uparrow}(p_{T}, x_{F}^{\downarrow\uparrow}) \sin \phi^{\uparrow}(p_{T}, x_{F}^{\downarrow\uparrow}) \sin \phi^{\uparrow}(p_{T}, x_{F}^{\downarrow\downarrow}) \sin \phi^{\uparrow}(p_{T}, x_{F}^{\downarrow\downarrow}) \sin \phi^{\downarrow}(p_{T}, x_{F}^{\downarrow\downarrow})$ mber die vergene analysis rmed in hindgonic and ponent of set of that a called the (#100 m) since tracks), "a much finer binning $\vec{p}_{\rm h}$ (2.2)ison to what f other (SI) DIS analyses at HERMES allow the same as the same and properties of and interpretation for. See (2.2)the 2D enalysis, see section 4.2. (2.2)eld for a given target spin direction († upwards or wards) mmetry $A_{A_{IV}}(p_{ap} x_F, \phi) =$ $\frac{\mathrm{d}^{3}N^{\uparrow(\downarrow)}}{\underline{U}} A_{UT}^{\sin\phi}(p_{T}, x_{F}) \sin\phi \qquad A_{\mathrm{N}} \equiv \frac{\int_{\pi}^{2\pi} \mathrm{d}\phi \ \sigma_{\mathrm{UT}} \sin\phi - \int_{0}^{\pi} \mathrm{d}\phi \ \sigma_{\mathrm{UT}} \sin\phi}{\widehat{\sigma}_{\mathrm{UT}} \sin\phi}$ $\int_{0}^{2\pi} \mathrm{d}\phi \,\sigma_{\mathrm{UU}}$ $dp_T dx_F d\phi^{2.4}$ $\left[L^{\uparrow(\downarrow)} d^{3}\sigma_{UU} + (-)L_{P}^{\uparrow(\downarrow)} d^{3}\sigma_{UT}\right] \Omega(p_{T}, x_{F}^{=}, \phi)^{-\frac{2}{\pi}A_{UT}^{\sin\phi}}$ G. schnell - EPV/EHU AFTER'13 - ECT*

 $ep^{\uparrow} \rightarrow hX$

virtual photon going into the page

$$\phi \simeq \phi_h - \phi_S$$

"Sivers angle"

lepton beam going into the page

Inclusive hadrons in ep

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Inclusive hadrons in ep

Don't forget these hyperons?

combining all these data

G. Schnell - UPV/EHU

AFTER'13 - ECT*

combining all these data

interpretation using impact-parameter dependent PDFs qualitatively describe many experimental findings

G. Schnell - UPV/EHU

combining all these data

Interpretation using impact-parameter dependent PDFs qualitatively describe many experimental findings

requires quantitative treatment

G. Schnell - UPV/EHU

when TMD approach to pp better understood try polarizing FF:

quark pol.

ron pol.		U	L	Т
	U	D_1		H_1^\perp
	L		G_1	H_{1L}^{\perp}
had	Т	D_{1T}^{\perp}	G_{1T}^{\perp}	$H_1 H_{1T}^{\perp}$

but first check with e⁺e⁻ people: can measure FF much better

when TMD approach to pp better understood try polarizing FF:

quark pol.

ron pol.		U	L	Т
	U	D_1		H_1^{\perp}
	L		G_1	H_{1L}^{\perp}
had	Т	D_{1T}^{\perp}	G_{1T}^{\perp}	$H_1 H_{1T}^{\perp}$

but first check with e⁺e⁻ people: can measure FF much better

SSAs are a challenge to both experiment and theory

- SSAs are a challenge to both experiment and theory
- TMD factorization applied to DIS:
 - non-zero correlation between quark transverse momentum and nucleon transverse polarization (Sivers effect)
 - non-zero transversity, and correlation between transverse hadron momentum and transverse spin of fragm. quark (Collins effect)
 - dihadron fragmention as tool to measure transversity
 - rich phenomenology details S. Melis

- SSAs are a challenge to both experiment and theory
- TMD factorization applied to DIS:
 - non-zero correlation between quark transverse momentum and nucleon transverse polarization (Sivers effect)
 - non-zero transversity, and correlation between transverse hadron momentum and transverse spin of fragm. quark (Collins effect)
 - dihadron fragmention as tool to measure transversity
 - rich phenomenology details S. Melis
- hadron production in pp: details I M. Anselmino
 - no clear interpretation of A_N (sign mismatch between Sivers and twist-3, large asymmetries even at high pT, ...)
 - signals of Collins and dihadron fragmentation

- SSAs are a challenge to both experiment and theory
- TMD factorization applied to DIS:
 - non-zero correlation between quark transverse momentum and nucleon transverse polarization (Sivers effect)
 - non-zero transversity, and correlation between transverse hadron momentum and transverse spin of fragm. quark (Collins effect)
 - dihadron fragmention as tool to measure transversity
 - rich phenomenology details S. Melis
- hadron production in pp: details I M. Anselmino
 - no clear interpretation of A_N (sign mismatch between Sivers and twist-3, large asymmetries even at high pT, ...)
 - signals of Collins and dihadron fragmentation

hint of a non-zero valence Boer-Mulders function from DY G. Schnell - UPV/EHU 49