Physics at A Fixed Target ExpeRiment (AFTER) using the LHC beams

 ECT*, Trento - Feb. 4-13, 2013
$S \cdot\left(P \times P_{h}\right)$

- an experimental perspective -

Early years of transverse spin

Early years of transverse spin

- largely neglected

Early years of transverse spin

- largely neglected
- "transverse spin" structure function g2 small (and vanishing) in parton model

Early years of transverse spin

- largely neglected
- "transverse spin" structure function g2 small (and vanishing) in parton model
- transverse-spin effects suppressed in pQCD:

PHYSICAL REVIEW LETTERS
Transverse Quark Polarization in Large- p_{T} Reactions, $e^{+} e^{-}$Jets, and Leptoproduction: A Test of Quantum Chromodynamics
G. L. Kane

Physics Department, University of Michigan, Ann Arbor, Michigan 48109
and
J. Pumplin and W. Repko

Physics Department, Michigan State University, East Lansing, Michigan 48823

Early years of transverse spin

- largely neglected
- "transverse spin" structure function g2 small (and vanishing) in parton model
- transverse-spin effects suppressed in pQCD:

PHYSICAL REVIEW LETTERS
18 December 1978
Transverse Quark Polarization in Large- p_{T} Reactions, $e^{+} e^{-}$Jets, and Leptoproduction: A Test of Quantum Chromodynamics
G. L. Kane

Physics Department, University of Michigan, Ann Arbor, Michigan 48109
and
J. Pumplin and W. Repko

Physics Department, Michigan State University, East Lansing, Michigan 48823

Early years of transverse spin

- largely neglected
- "transverse spin" structure function g2 small (and vanishing) in parton model
- transverse-spin effects suppressed in pQCD:

PHYSICAL REVIEW LETTERS
18 December 1978
Transverse Quark Polarization in Large- p_{T} Reactions, $e^{+} e^{-}$Jets, and Leptoproduction: A Test of Quantum Chromodynamics
G. L. Kane

Physics Department, University of Michigan, Ann Arbor, Michigan 48109
and
J. Pumplin and W. Repko

Physics Department, Michigan State University, East Lansing, Michigan 48823

Nature does not seem to cooperate

... also not for pion production

also not for pion production

also not for pion production

- large left-right asymmetries persist even to RHIC energies

what's the origin of these SSA?

- fragmentation effect?

[J.C. Collins, NPB 396 (1993) 161]
- correlating transverse quark spin with transverse momentum

what's the origin of these SSA?

- fragmentation effect?

[J.C. Collins, NPB 396 (1993) 161]
- correlating transverse quark spin with transverse momentum

what's the origin of these SSA?

- fragmentation effect?

[J.C. Collins, NPB 396 (1993) 161]
- correlating transverse quark spin with transverse momentum
- quark-distribution effect?

[D.W. Sivers, PRD 41 (1990) 83]
- correlating transverse quark momentum with transverse spin of nucleon

Transverse spin

$$
\begin{aligned}
&|\uparrow \downarrow\rangle=\frac{1}{2}(|+\rangle \pm|-\rangle) \\
&\langle\uparrow| \hat{O}|\uparrow\rangle-\langle\downarrow| \hat{O}|\downarrow\rangle \propto\langle+| \hat{O}|-\rangle-\langle-| \hat{O}|+\rangle \\
& \text { transverse-spin involves helicity flip }
\end{aligned}
$$

Transverse spin

$$
\begin{aligned}
|\uparrow \downarrow\rangle & =\frac{1}{2}(|+\rangle \pm|-\rangle) \\
\langle\uparrow| \hat{O}|\uparrow\rangle-\langle\downarrow| \hat{O}|\downarrow\rangle & \propto\langle+| \hat{O}|-\rangle-\langle-| \hat{O}|+\rangle
\end{aligned}
$$

transverse-spin involves helicity flip
PDFs: $f_{1}^{q}=\varnothing$

Transverse spin

$$
\begin{aligned}
|\uparrow \downarrow\rangle & =\frac{1}{2}(|+\rangle \pm|-\rangle) \\
\langle\uparrow| \hat{O}|\uparrow\rangle-\langle\downarrow| \hat{O}|\downarrow\rangle & \propto\langle+| \hat{O}|-\rangle-\langle-| \hat{O}|+\rangle
\end{aligned}
$$

transverse-spin involves helicity flip
PDFS: $f_{1}^{\mathrm{q}}=\bigcirc$

Transverse spin

$$
\begin{aligned}
|\uparrow \downarrow\rangle & =\frac{1}{2}(|+\rangle \pm|-\rangle) \\
\langle\uparrow| \hat{O}|\uparrow\rangle-\langle\downarrow| \hat{O}|\downarrow\rangle & \propto\langle+| \hat{O}|-\rangle-\langle-| \hat{O}|+\rangle
\end{aligned}
$$

transverse-spin involves helicity flip

Transverse spin

$$
\begin{aligned}
|\uparrow \downarrow\rangle & =\frac{1}{2}(|+\rangle \pm|-\rangle) \\
\langle\uparrow| \hat{O}|\uparrow\rangle-\langle\downarrow| \hat{O}|\downarrow\rangle & \propto\langle+| \hat{O}|-\rangle-\langle-| \hat{O}|+\rangle
\end{aligned}
$$

transverse-spin involves helicity flip
PDFs: $f_{1}^{\mathrm{q}}=\bigcirc g_{1}^{\mathrm{q}}=\Theta \rightarrow-\longrightarrow h_{1}^{\mathrm{q}}=\uparrow-\uparrow$

need to couple to chiral-odd fragmentation function, i.e., dependent on transverse quark-spin

quark polarimetry

- helicity distribution:

quark polarimetry

- helicity distribution:

- transverse polarization:

need additional "polarimeter" for transversely polarized quarks

Transverse SSA and time reversal

- time reversal: spin \& momentum directions change sign
- if $\sigma \sim S \cdot\left(k \times P_{h \perp}\right)$
then (time-reversal invariance): $\sigma \sim-S \cdot\left(k \times P_{h \perp}\right)$
- $\sigma \stackrel{?}{\equiv} 0$ Num SSA require interference effects!

Transverse SSA and time reversal

- non-vanishing $S \cdot\left(k \times P_{h \perp}\right)$ structure requires interference of amplitudes (initial- of final-state interactions) with different imaginary parts
- fragmentation functions involve interference of many amplitudes/channels:
\Rightarrow can those interfere constructively and produce such large effects?
(especially at high energies, when many particles can be produced)
- what about leading-twist parton distribution functions?

Quark distributions

- distribution function in handbag representation:

- No interference

Quark distributions

- distribution function in handbag representation:

[S. Brodsky et al., Phys. Lett. B530, 99 (2002)]
- interference of amplitudes with different numbers of softgluon exchanges possible (not $1 / Q$ suppressed!)
- gluons needed for color gauge invariance
- represent color field of remnant seen by outgoing quark
- involves transverse momentum -> going beyond collinear fact.

SSA: beyond leading-twist collinear approach

SSA: beyond leading-twist collinear approach

TMD
factorization

TMD: transverse-momentum-dependent distributions

SSA: beyond leading-twist collinear approach

High
Intermediate

$$
q_{T}^{2} \ll Q^{2} \quad M^{2} \ll q_{T}^{2} \ll Q^{2} \quad M^{2} \ll q_{T}^{2}
$$

q_{T}^{2}

$$
\begin{gathered}
M^{2} \\
\text { TMD }
\end{gathered}
$$

factorization
twist-3 collinear factorization

TMD: transverse-momentum-dependent distributions

SSA: beyond leading-twist collinear approach

TMD
factorization

Intermediate

$$
q_{T}^{2} \ll Q^{2} \quad M^{2} \ll q_{T}^{2} \ll Q^{2} \quad M^{2} \ll q_{T}^{2}
$$

overlap region

High

$$
M^{2}
$$

q_{T}^{2}

TMD: transverse-momentum-dependent distributions

Spin-Momentum Structure of the Nucleon

$$
\begin{aligned}
\frac{1}{2} \operatorname{Tr}\left[\left(\gamma^{+}+\lambda \gamma^{+} \gamma_{5}\right) \Phi\right]= & \frac{1}{2}\left[f_{1}+S^{i} \epsilon^{i j} k^{j} \frac{1}{m} f_{1 T}^{\perp}+\lambda \Lambda g_{1}+\lambda S^{i} k^{i} \frac{1}{m} g_{1 T}\right] \\
\frac{1}{2} \operatorname{Tr}\left[\left(\gamma^{+}-s^{j} i \sigma^{+j} \gamma_{5}\right) \Phi\right]= & \frac{1}{2}\left[f_{1}+S^{i} \epsilon^{i j} k^{j} \frac{1}{m} f_{1 T}^{\perp}+s^{i} \epsilon^{i j} k^{j} \frac{1}{m} h_{1}^{\perp}+s^{i} S^{i} h_{1}\right. \\
& \left.+s^{i}\left(2 k^{i} k^{j}-\boldsymbol{k}^{2} \delta^{i j}\right) S^{j} \frac{1}{2 m^{2}} h_{1 T}^{\perp}+\Lambda s^{i} k^{i} \frac{1}{m} h_{1 L}^{\perp}\right]
\end{aligned}
$$

- each TMD describes a particular spinmomentum correlation
- functions in black survive integration over transverse momentum
- functions in green box are chirally odd
- functions in red are naive T-odd

Spin-Momentum Structure of the Nucleon

$\frac{1}{2} \operatorname{Tr}\left[\left(\gamma^{+}+\lambda \gamma^{+} \gamma_{5}\right) \Phi\right]=$	$\frac{1}{2}\left[f_{1}+S^{i} \epsilon^{i j} k^{j} \frac{1}{m} f_{1 T}^{\perp}+\lambda \Lambda g_{1}+\lambda S^{i} k^{i} \frac{1}{m} g_{1 T}\right]$
$\frac{1}{2} \operatorname{Tr}\left[\left(\gamma^{+}-s^{j} i \sigma^{+j} \gamma_{5}\right) \Phi\right]=$	$\frac{1}{2}\left[f_{1}+S^{i} \epsilon^{i j} k^{j} \frac{1}{m} f_{1 T}^{\perp}+s^{i} \epsilon^{i j} k^{j} \frac{1}{m} h_{1}^{\perp}+s^{i} S^{i} h_{1}\right.$
	$\left.+s^{i}\left(2 k^{i} k^{j}-\boldsymbol{k}^{2} \delta^{i j}\right) S^{j} \frac{1}{2 m^{2}} h_{1 T}^{\perp}+\Lambda s^{i} k^{i} \frac{1}{m} h_{1 L}^{\perp}\right]$

- onch Tann doscribes a particular spin-

Boer-Mulders rrelation

- functions in black survive integration over transverse momentum
green box are chirally odd

Sivers

transversity
tunctions in red are naive T-odd

TMD fragmentation functions

- similarly characterize hadronization process:

					quark pol.			

TMD fragmentation functions

- similarly characterize hadronization process:

TMD fragmentation functions

- similarly characterize hadronization process:

Collins fctn. - chiral-odd fragmentation

Collins fctn. - chiral-odd fragmentation

Collins fctn. - chiral-odd fragmentation

 in fragmentation

- left-right asymmetry in hadron direction transverse to both quark spin and momentum

Collins fctn. - chiral-odd fragmentation

 in fragmentation

- left-right asymmetry in hadron direction transverse to both quark spin and momentum
- extracted from SIDIS and $e^{+} e^{-}$annihilation data

Collins fctn. - chiral-odd fragmentation

 in fragmentation

- left-right asymmetry in hadron direction transverse to both quark spin and momentum
- extracted from SIDIS and $e^{+} e^{-}$annihilation data

Probing TMDs in semi-inclusive DIS

in SIDIS*) couple PDFs to:
*) semi-inclusive DIS with unpolarized final state

Probing TMDs in semi-inclusive DIS

quark pol.						
		U	L	T		
8'	U	f_{1}		h_{1}^{\perp}	PDF	FF
\%	L		$g_{1 L}$	$h_{1 L}^{\perp}$	in SIDIS*) ${ }^{\text {couple }}$	DF
少	T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$	Collins FF:	H

*) semi-inclusive DIS with unpolarized final state

Probing TMDs in semi-inclusive DIS

in SIDIS*) couple PDFs to:
*) semi-inclusive DIS with unpolarized final state

Probing TMDs in semi-inclusive DIS

\rightarrow gives rise to characteristic azimuthal dependences
*) semi-inclusive DIS with unpolarized final state

1-Hadron production (ep $\rightarrow e h X)$

$$
\begin{array}{r}
d \sigma=d \sigma_{U U}^{0}+\cos 2 \phi d \sigma_{U U}^{1}+\frac{1}{Q} \cos \phi d \sigma_{U U}^{2}+\lambda_{e} \frac{1}{Q} \sin \phi d \sigma_{L U}^{3} \\
+S_{L}\left\{\sin 2 \phi d \sigma_{U L}^{4}+\frac{1}{Q} \sin \phi d \sigma_{U L}^{5}+\lambda_{e}\left[d \sigma_{L L}^{6}+\frac{1}{Q} \cos \phi d \sigma_{L L}^{7}\right]\right\} \\
+S_{T}\left\{\sin \left(\phi-\phi_{S}\right) d \sigma_{U T}^{8}+\sin \left(\phi+\phi_{S}\right) d \sigma_{U T}^{9}+\sin \left(3 \phi-\phi_{S}\right) d \sigma_{U T}^{10}\right. \\
\sigma_{X Y}+\frac{1}{Q}\left(\sin \left(2 \phi-\phi_{S}\right) d \sigma_{U T}^{11}+\sin \phi_{S} d \sigma_{U T}^{12}\right)
\end{array}
$$

$$
\left.+\lambda_{e}\left[\cos \left(\phi-\phi_{S}\right) d \sigma_{L T}^{13}+\frac{1}{Q}\left(\cos \phi_{S} d \sigma_{L T}^{14}+\cos \left(2 \phi-\phi_{S}\right) d \sigma_{L T}^{15}\right)\right]\right\}
$$

Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197 Boer and Mulders, Phys. Rev. D 57 (1998) 5780 Bacchetta et al., Phys. Lett. B 595 (2004) 309 Bacchetta et al., JHEP 0702 (2007) 093
"Trento Conventions", Phys. Rev. D 70 (2004) 117504

1-Hadron production (ep $\rightarrow e h X)$

$$
\begin{array}{r}
d \sigma=d \sigma_{U U}^{0}+\cos 2 \phi d \sigma_{U U}^{1}+\frac{1}{Q} \cos \phi d \sigma_{U U}^{2}+\lambda_{e} \frac{1}{Q} \sin \phi d \sigma_{L U}^{3} \\
+S_{L}\left\{\sin 2 \phi d \sigma_{U L}^{4}+\frac{1}{Q} \sin \phi d \sigma_{U L}^{5}+\lambda_{e}\left[d \sigma_{L L}^{6}+\frac{1}{Q} \cos \phi d \sigma_{L L}^{7}\right]\right\} \\
+S_{T}\left\{\sin \left(\phi-\phi_{S}\right) d \sigma_{U T}^{8}+\sin \left(\phi+\phi_{S}\right) d \sigma_{U T}^{9}+\sin \left(3 \phi-\phi_{S}\right) d \sigma_{U T}^{10}\right.
\end{array}
$$

$$
+\frac{1}{Q}\left(\sin \left(2 \phi-\phi_{S}\right) d \sigma_{U T}^{11}+\sin \phi_{S} d \sigma_{U T}^{12}\right)
$$

$$
\left.+\lambda_{e}\left[\left(\cos \left(\phi-\phi_{S}\right) d \sigma_{L T}^{13}\right)+\frac{1}{Q}\left(\cos \phi_{S} d \sigma_{L T}^{14}+\cos \left(2 \phi-\phi_{S}\right) d \sigma_{L T}^{15}\right)\right]\right\}
$$

Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197 Boer and Mulders, Phys. Rev. D 57 (1998) 5780 Bacchetta et al., Phys. Lett. B 595 (2004) 309
Bacchetta et al., JHEP 0702 (2007) 093
"Trento Conventions", Phys. Rev. D 70 (2004) 117504

1-Hadron production (ep $\rightarrow e h X)$

$$
\begin{gathered}
d \sigma=d \sigma_{U U}^{0}+\cos 2 \phi d \sigma_{U U}^{1}+\frac{1}{Q} \cos \phi d \sigma_{U U}^{2}+\lambda_{e} \frac{1}{Q} \sin \phi d \sigma_{L U}^{3} \\
+S_{L}\left\{\sin 2 \phi d \sigma_{U L}^{4}+\frac{1}{Q} \sin \phi d \sigma_{U L}^{5}+\lambda_{e}\left[d \sigma_{L L}^{6}+\frac{1}{Q} \cos \phi d \sigma_{L L}^{7}\right]\right\} \\
+S_{T}\left\{\sin \left(\phi-\phi_{S}\right) d \sigma_{U T}^{8}+\sin \left(\phi+\phi_{S}\right) d \sigma_{U T}^{9}+\sin \left(3 \phi-\phi_{S}\right) d \sigma_{U T}^{10}\right.
\end{gathered}
$$

$$
+\frac{1}{Q}\left(\sin \left(2 \phi-\phi_{S}\right) d \sigma_{U T}^{11}+\sin \phi_{S} d \sigma_{U T}^{12}\right)
$$

Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197 Boer and Mulders, Phys. Rev. D 57 (1998) 5780 Bacchetta et al., Phys. Lett. B 595 (2004) 309
Bacchetta et al., JHEP 0702 (2007) 093
"Trento Conventions", Phys. Rev. D 70 (2004) 117504

Azimuthal spin asymmetries

$$
A_{U T}\left(\phi, \phi_{S}\right)=\frac{1}{\langle | S_{\perp}| \rangle} \frac{N_{h}^{\uparrow}\left(\phi, \phi_{S}\right)-N_{h}^{\downarrow}\left(\phi, \phi_{S}\right)}{N_{h}^{\uparrow}\left(\phi, \phi_{S}\right)+N_{h}^{\downarrow}\left(\phi, \phi_{S}\right)}
$$

$$
\sim \sin \left(\phi+\phi_{S}\right) \sum_{q} e_{q}^{2} \mathcal{I}\left[\frac{k_{T} \hat{P}_{h \perp}}{M_{h}} h_{1}^{q}\left(x, p_{T}^{2}\right) H_{1}^{\perp, q}\left(z, k_{T}^{2}\right)\right]
$$

$$
\underbrace{\rho}+\sin \left(\phi-\phi_{S}\right) \sum_{q} e_{q}^{2} \mathcal{I}\left[\frac{p_{T} \hat{P}_{h \perp}}{M} f_{1 T}^{\perp, q}\left(x, p_{T}^{2}\right) D_{1}^{q}\left(z, k_{T}^{2}\right)\right]
$$

Azimuthal spin asymmetries

$$
A_{U T}\left(\phi, \phi_{S}\right)=\frac{1}{\langle | S_{\perp}| \rangle} \frac{N_{h}^{\uparrow}\left(\phi, \phi_{S}\right)-N_{h}^{\downarrow}\left(\phi, \phi_{S}\right)}{N_{h}^{\uparrow}\left(\phi, \phi_{S}\right)+N_{h}^{\downarrow}\left(\phi, \phi_{S}\right)}
$$

$$
\sim \sin \left(\phi+\phi_{S}\right) \sum_{q} e_{q}^{2} \mathcal{I}\left[\frac{k_{T} \hat{P}_{h \perp}}{M_{h}} h_{1}^{q}\left(x, p_{T}^{2}\right) H_{1}^{\perp, q}\left(z, k_{T}^{2}\right)\right]
$$

$$
+\sin \left(\phi-\phi_{S}\right) \sum_{q} e_{q}^{2} \mathcal{I}\left[\frac{p_{T} \hat{P}_{h \perp}}{M} f_{1 T}^{\perp, q}\left(x, p_{T}^{2}\right) D_{1}^{q}\left(z, k_{T}^{2}\right)\right]
$$

\ldots I[...]: convolution integral over initial (p_{T}) and final $\left(k_{T}\right)$ quark transverse momenta

Fit azimuthal modulations, e.g., using Max.Likelihood:

$$
P D F\left(2\left\langle\sin \left(\phi \pm \phi_{S}\right)\right\rangle_{U T}, \ldots, \phi, \phi_{S}\right)=\frac{1}{2}\left\{1+P_{T}\left(2\left\langle\sin \left(\phi \pm \phi_{S}\right)\right\rangle_{U T} \sin \left(\phi \pm \phi_{s}\right)+\ldots\right)\right\}
$$

The COMPASS experiment @ CERN

The quest for transversely polarized quarks

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

transversity distribution

 (Collins fragmentation)- significant in size and opposite in sign for charged pions
- disfavored Collins FF large and opposite in sign to favored one

- leads to various cancellations in SSA observables

2005: First evidence from HERMES SIDIS on proton

Non-zero transversity
Non-zero Collins function

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- wealth of new results available and/or analyses ongoing

Collins amplitudes

[PRL 107 (2011) 072003]

[HERMES, PLB 693 (2010) 11; COMPASS, PLB 717 (2012) 376]

- Jefferson Lab [PRL 107 (2011) 072003]
- COMPASS [PLB 692 (2010) 240, PLB 717 (2012) 376]
- HERMES
[PLB 693 (2010) 11]
- BELLE
- BaBar

Collins FF and transversity fit

fit

$$
\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \pi \pi \mathbf{X}
$$

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- similar behavior for pions
- similar behavior for K^{+}
- different trend for K^{-}
(opposite sign conventions!)

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	f_{1}^{\perp}	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

transversity distribution (2-hadron fragmentation)

$$
A_{U T} \sim \sin \left(\phi_{R \perp}+\phi_{S}\right) \sin \theta h_{1} H_{1}^{\varangle}
$$

$$
\begin{aligned}
H_{1}^{\varangle, s p}\left(z, M_{\pi \pi}^{2}\right) & =\frac{\sin \delta_{0} \sin \delta_{1} \sin \left(\delta_{0}-\delta_{1}\right) H_{1}^{\varangle, s p^{\prime}}(z)}{\delta_{0}\left(\delta_{1}\right) \rightarrow \mathrm{S}(\mathrm{P}) \text {-wave phase shifts }} \\
& =\mathcal{P}\left(M_{\pi \pi}^{2}\right) H_{1}^{\varangle, s p^{\prime}}(z)
\end{aligned}
$$

$\Rightarrow A_{U T}$ might depend strongly on $M_{\pi \pi}$

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

transversity distribution (2-hadron fragmentation)

[A. Airapetian et al., JHEP 06 (2008) 017]

[C. Adolph et al., PLB 713 (2012) 10]

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

transversity distribution (2-hadron fragmentation)

- HERMES: pion pairs COMPASS: hadron pairs
(for comparison need to correct for depolarization factor and sign change)
${ }^{2} \mathrm{H}$ results consistent with zero
[A. Airapetian et al., JHEP 06 (2008) 017]

[C. Adolph et al., PLB 713 (2012) 10]

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{\frac{1}{1 T}}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

transversity distribution (2-hadron fragmentation)

- HERMES: pion pairs COMPASS: hadron pairs
(for comparison need to correct for depolarization factor and sign change)
- ${ }^{2} \mathrm{H}$ results consistent with zero

$$
\mathbf{x h}_{1}^{\mathrm{u}_{v}}(\mathbf{x})-\mathbf{x h}_{1}^{\mathrm{d}_{\mathrm{v}}}(\mathbf{x}) / 4
$$

[C. Adolph et al., PLB 713 (2012) 10]

- results from $e^{+} e^{-}$by BELLE allow first (collinear) extraction of transversity (compared to Anselmino et al.)

transversity extraction

- combining SIDIS (COMPASS \& HERMES) and $e^{+} e^{-}$data (BELLE):

- promising agreement between collinear and TMD extraction of transversity
- no obvious sign of difference in TMD (Collins) from collinear (dihadron) FF evolution

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- chiral-odd \Leftrightarrow needs Collins FF (or similar)
- leads to $\sin \left(3 \phi-\phi_{s}\right)$ modulation in Aut
- proton and deuteron data consistent with zero
- cancelations? pretzelosity=zero? or just the additional suppression by two powers of $P_{h \perp}$

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- chiral-odd \rightarrow needs Collins FF (or similar)
- leads to $\sin \left(3 \phi-\phi_{s}\right)$ modulation in Aut
- proton and deuteron data consistent with zero
- cancelations? pretzelosity=zero? or just the additional suppression by two powers of P_{h}

Pretzelosity

Sivers effect

naively T-odd distributions
"Wilson-line physics"

Sivers effect

naively T-odd distributions

"Wilson-line physics"

Boer-Mulders effect

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- naive T-odd
- requires FSI via nonperturbative gluon exchange(s) ("Wilson line")
- leads to opposite sign in DIS and Drell-Yan (firm QCD prediction!)
- relation to GPD E + FSI
yields opposite signs of
Sivers fct. for up and down quarks

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- naive T-odd
- requires FSI via nonperturbative gluon exchange(s) ("Wilson line")
- leads to opposite sign in DIS and Drell-Yan (firm QCD prediction!)
- relation to GPD E + FSI yields opposite signs of Sivers fct. for up and down quarks

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes for pions

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes for pions

$$
2\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle_{\mathrm{UT}}=-\frac{\sum_{q} e_{q}^{2} f_{1 \mathrm{~T}}^{\perp, q}\left(x, p_{T}^{2}\right) \otimes_{\mathcal{W}} D_{1}^{q}\left(z, k_{T}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, p_{T}^{2}\right) \otimes D_{1}^{q}\left(z, k_{T}^{2}\right)}
$$

π^{+}dominated by u-quark scattering:

$$
\simeq-\frac{f_{1 T}^{\perp u}\left(x, p_{T}^{2}\right) \otimes \mathcal{W} D_{1}^{u \rightarrow \pi^{+}}\left(z, k_{T}^{2}\right)}{f_{1}^{u}\left(x, p_{T}^{2}\right) \otimes D_{1}^{u \rightarrow \pi^{+}}\left(z, k_{T}^{2}\right)}
$$

u-quark Sivers DF < 0

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes for pions

$$
2\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle_{\mathrm{UT}}=-\frac{\sum_{q} e_{q}^{2} f_{1}^{\perp, q}\left(x, p_{T}^{2}\right) \otimes \mathcal{W} D_{1}^{q}\left(z, k_{T}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, p_{T}^{2}\right) \otimes D_{1}^{q}\left(z, k_{T}^{2}\right)}
$$

π^{+}dominated by u-quark scattering:

$$
\simeq-\frac{f_{1 T}^{\perp, u}\left(x, p_{T}^{2}\right) \otimes \mathcal{W} D_{1}^{u \rightarrow \pi^{+}}\left(z, k_{T}^{2}\right)}{f_{1}^{u}\left(x, p_{T}^{2}\right) \otimes D_{1}^{u \rightarrow \pi^{+}}\left(z, k_{T}^{2}\right)}
$$

u-quark Sivers DF < 0
d-quark Sivers DF >0 (cancelation for π^{-})

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers function

- cancelation for D target supports opposite signs of up and down Sivers

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- cancelation for D target supports opposite signs of up and down Sivers
- new results from JLab using ${ }^{3} \mathrm{He}$ target and from COMPASS for proton target

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- cancelation for D target supports opposite signs of up and down Sivers
- new results from JLab using ${ }^{3} \mathrm{He}$ target and from COMPASS for proton targe†

G. Schnell - UPV/EHU

Sivers function

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes

smaller h^{+}amplitudes seen by COMPASS

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

G. Schnell - UPV/EHU

Sivers amplitudes

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

difference from evolution?

G. Schnell - UPV/EHU

x

Boer-Mulders

the other naive-T-odd distribution

the other naive-T-odd distribution

Modulations in spin-independent

 SIDIS cross section$$
\begin{aligned}
\frac{\mathrm{d}^{5} \sigma}{\mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \mathrm{~d} \phi_{h} \mathrm{~d} P_{h \perp}^{2}}= & \frac{\alpha^{2}}{x y Q^{2}}\left(1+\frac{\gamma^{2}}{2 x}\right)\left\{A(y) F_{\mathrm{UU}, \mathrm{~T}}+B(y) F_{\mathrm{UU}, \mathrm{~L}}\right. \\
& \left.+C(y) \cos \phi_{h} F_{\mathrm{UU}}^{\cos \phi_{h}}+B(y) \cos 2 \phi_{h} F_{\mathrm{UU}}^{\cos 2 \phi_{h}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\text { leading twist }}{F_{U U}^{\cos 2 \phi_{h}}} \propto C\left[-\frac{2\left(\hat{P}_{h \perp} \cdot \vec{k}_{T}\right)\left(\hat{P}_{h \perp} \cdot \vec{p}_{T}\right)-\vec{k}_{T} \cdot \vec{p}_{T}}{M M_{h}} h_{1}^{\perp} H_{1}^{\perp}\right. \\
& \frac{\text { next to teading twist }}{F_{U U}^{\cos \phi_{h}}} \propto \frac{2 M}{\text { EFFECT }} C\left[-\frac{\hat{P}_{h \perp} \cdot \vec{p}_{T}}{M_{h}} x h_{1}^{\perp} H_{1}^{\perp}-\frac{\hat{P}_{h \perp} \cdot \vec{k}_{T}}{M} x f_{1} D_{1}+\ldots\right] \\
& \text { (Implicit sum over quark flavours) }
\end{aligned}
$$

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{\stackrel{1}{1 T}}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Signs of Boer-Mulders

- All contributions
....... Boer-Mulders
...... Cahn (twist 4)

[V. Barone et al., Phys. Rev.D78 (2008) 045022]

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{\stackrel{1}{1 T}}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Signs of Boer-Mulders

_ All contributions
........ Boer-Mulders
...... Cahn (twist 4)

[V. Barone et al., Phys. Rev.D78 (2008) 045022]

- Cahn effect only does not describe data

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Signs of Boer-Mulders

_ All contributions
........ Boer-Mulders
...... Cahn (twist 4)

[V. Barone et al., Phys. Rev.D78 (2008) 045022]

- Cahn effect only does not describe data
- opposite sign for charged pions with larger magnitude for π^{-}(as expected)
-> same-sign BM-function for valence quarks

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{\frac{1}{1 T}}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- All contributions
........ Boer-Mulders
...... Cahn (twist 4)

Signs of Boer-Mulders

[Airapetian et al., PRD 87 (2013) 012010]

[V. Barone et al., Phys. Rev.D78 (2008) 045022]

- Cahn effect only does not describe data
- opposite sign for charged pions with larger magnitude for π^{-}(as expected)
-> same-sign BM-function for valence quarks
- intriguing behavior for kaons

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Signs of Boer-Mulders

$\uparrow p_{T}^{h} ; \rightarrow x$

preliminary results by COMPASS confirm non-vanishing cosine modulations

transverse spin in hadron collisions

process dependence of T-odd TMDs

 example

DIS: attractive
Drell-Yan: repulsive
process dependence of T-odd TMDs simple QED example

DIS: attractive
Drell-Yan: repulsive

result: Sivers|DIS $=-$ Sivers|Dy

process dependence of T-odd TMDs

simple QED example

DIS: attract xed
Drell-Yan: repulsive

result: Sivers|DIS $=-$ Sivers $\left.\right|_{\text {DY }}$

Unpolarized Drell-Yan

$\left(\frac{1}{\sigma}\right)\left(\frac{d \sigma}{d \Omega}\right)=\left[\frac{3}{4 \pi}\right]\left[1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi\right]$

lepton plane (cm)

$$
1-\lambda-2 \nu=0
$$

Large deviations from Lam-Tung relation observed in pion-induced DY [NA10 ('86/'88) \& E615 ('89)]

Unpolarized Drell-Yan

$\left(\frac{1}{\sigma}\right)\left(\frac{d \sigma}{d \Omega}\right)=\left[\frac{3}{4 \pi}\right]\left[1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi\right]$

lepton plane (cm)

$$
1-\lambda-2 \nu=0
$$

Large deviations from Lam-Tung relation observed in pion-induced DY [NA10 ('86/'88) \& E615 ('89)]

- not explainable using collinear pQCD

Unpolarized Drell-Yan

$$
\left(\frac{1}{\sigma}\right)\left(\frac{d \sigma}{d \Omega}\right)=\left[\frac{3}{4 \pi}\right]\left[1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi\right]
$$

lepton plane (cm)

$$
1-\lambda-2 \nu=0
$$

Large deviations from Lam-Tung relation observed in pion-induced DY [NA10 ('86/'88) \& E615 ('89)]

- not explainable using collinear PQCD
- possible source: Boer-Mulders effect

Unpolarized Drell-Yan

$\left(\frac{1}{\sigma}\right)\left(\frac{d \sigma}{d \Omega}\right)=\left[\frac{3}{4 \pi}\right]\left[1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi\right]$

- not explainable using collinear PQCD
- possible source: Boer-Mulders effect ${ }^{\text {² }}$
- much smaller effect for pp and pd DY $\rightarrow \rightarrow$ valence BM effect?

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- Sivers fit to HERMES data nicely describes A_{N} in pp
- may also originate from Collins effect or twist-3 effects
- only sizable in forward direction

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- Sivers fit to HERMES data nicely describes A_{N} in pp
- may also originate from Collins effect or twist-3 effects
- only sizable in forward direction
- after early success of linking twist-3 with Sivers, sign mismatch discovered:
$g T_{q, F}(x, x)=-\left.\int d^{2} k_{\perp} \frac{\left|k_{\perp}\right|^{2}}{M} f_{1 T}^{\perp q}\left(x, k_{\perp}^{2}\right)\right|_{\text {siDIs }}$

pieces in the A_{N} puzzle

- go from purely inclusive to analyzing angular correlations
\Rightarrow Collins effect:

Sivers effect: (jet A_{N}, di-jets)

Inclusive hadron electro-production

$$
e p^{\uparrow} \rightarrow h X
$$

Inclusive hadron electro-production

- scattered lepton undetected \Rightarrow lepton kinematics unknown $e p^{\uparrow} \rightarrow h X$

Inclusive hadron electro-production

- scattered lepton undetected \Rightarrow lepton kinematics unknown $e p^{\uparrow} \rightarrow h X$
- dominated by quasi-real photo-production (low Q^{2}) \rightarrow hadronic component of photon relevant

Inclusive hadron electro-production

- scattered lepton undetected - lepton kinematics unknown $e p^{\uparrow} \rightarrow h X$
- dominated by quasi-real photo-production (low Q^{2}) \rightarrow hadronic component of photon relevant
- cross section proportional to $S_{N}\left(k \times p_{h}\right) \sim \sin \phi$

Inclusive hadron electro-production

- scattered lepton undetected \Rightarrow lepton kinematics unknown $e p^{\uparrow} \rightarrow h X$
- dominated by quasi-real photo-production (low Q^{2}) \rightarrow hadronic component of photon relevant
- cross section proportional to $S_{N}\left(k \times p_{h}\right) \sim \sin \phi$ $A_{U T}\left(p_{T}, x_{F}, \phi\right)=$

$$
A_{U T}^{\sin \phi}\left(p_{T}, x_{F}\right) \sin \phi
$$

Inclusive hadron electro-production

- scattered lepton undetected - lepton kinematics unknown $e p^{\uparrow} \rightarrow h X$
- dominated by quasi-real photo-production (low Q^{2}) \rightarrow hadronic component of photon relevant
- cross section proportional to $S_{N}\left(k \times p_{h}\right) \sim \sin \phi$

$$
\begin{aligned}
& A_{U T}\left(p_{T}, x_{F}, \phi\right)= \\
& A_{U T}^{\sin \phi}\left(p_{T}, x_{F}\right) \sin \phi
\end{aligned}
$$

$$
A_{\mathrm{N}} \equiv \frac{\int_{\pi}^{2 \pi} \mathrm{~d} \phi \sigma_{\mathrm{UT}} \sin \phi-\int_{0}^{\pi} \mathrm{d} \phi \sigma_{\mathrm{UT}} \sin \phi}{\int_{0}^{2 \pi} \mathrm{~d} \phi \sigma_{\mathrm{UU}}}
$$

$$
=-\frac{2}{\pi} A_{\mathrm{UT}}^{\sin \phi}
$$

Inclusive hadron electro-production

$e p^{\uparrow} \rightarrow e h X$

virtual photon going into the page
$e p^{\uparrow} \rightarrow h X$

lepton beam going into the page

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Inclusive hadrons in ep

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Inclusive hadrons in ep

behavior and size similar to SIDIS Sivers

Don't forget these hyperons?

Comprehensive review of data by A.D. Panagiotou (Int.J.Mod.Phys.A 5 (1990) 1197)

combining all these data

combining all these data

combining all these data

more hopes for hyperons?

- when TMD approach to pp better understood try polarizing FF: quark pol.

- but first check with $e^{+} e^{-}$people: can measure FF much better

more hopes for hyperons?

- when TMD approach to pp better understood try polarizing FF: quark pol.

- but first check with $e^{+} e^{-}$people: can measure FF much better

Conclusion

Conclusion

- SSAs are a challenge to both experiment and theory

Conclusion

- SSAs are a challenge to both experiment and theory
- TMD factorization applied to DIS:
- non-zero correlation between quark transverse momentum and nucleon transverse polarization (Sivers effect)
- non-zero transversity, and correlation between transverse hadron momentum and transverse spin of fragm. quark (Collins effect)
- dihadron fragmention as tool to measure transversity
- rich phenomenology details S. Melis

Conclusion

- SSAs are a challenge to both experiment and theory
- TMD factorization applied to DIS:
- non-zero correlation between quark transverse momentum and nucleon transverse polarization (Sivers effect)
- non-zero transversity, and correlation between transverse hadron momentum and transverse spin of fragm. quark (Collins effect)
- dihadron fragmention as tool to measure transversity
- rich phenomenology details S. Melis
- hadron production in pp: details M. Anselmino
- no clear interpretation of A_{N} (sign mismatch between Sivers and twist-3, large asymmetries even at high $\mathrm{pT}, . .$.
- signals of Collins and dihadron fragmentation

Conclusion

- SSAs are a challenge to both experiment and theory
- TMD factorization applied to DIS:
- non-zero correlation between quark transverse momentum and nucleon transverse polarization (Sivers effect)
- non-zero transversity, and correlation between transverse hadron momentum and transverse spin of fragm. quark (Collins effect)
- dihadron fragmention as tool to measure transversity
- rich phenomenology details S. Melis
- hadron production in pp: details M. Anselmino
- no clear interpretation of A_{N} (sign mismatch between Sivers and twist-3, large asymmetries even at high $\mathrm{pT}, . .$.
- signals of Collins and dihadron fragmentation
- hint of a non-zero valence Boer-Mulders function from DY

