Physics Flagships for AFTER: Fixed \mathbf{T} arget $\mathbf{E x p e R}$ iments @ the LHC

Heavy Quark Physics

Stan Brodsky

AFTER @ LHC

 ECT* WorkshopFebruary 4-8, 2013
European Center for Theoretical Studies in Nuclear Physics and Related Areas

Thanks to the France-Stanford Center for Interdisciplinary Studies

Thanks to: \mathcal{F}-P. Lansberg, F. Fleuret

A Compelling Idea for QCD:

Utilize the High-Energy LHC proton and nuclear beams in a fixed-target mode

- Nuclear and Polarized Targets

AFTER@LHC

A Fixed-Target ExpeRiment

- Study Dynamics at extreme rapidities: $X_{F}=-I$

A new hadron physics laboratory for studying and testing QCD

- 7 TeV proton beam collisions on a proton or nuclear target -Extract beam with Crystals -
- Minimal effects on the collider
- Equivalent to $\mathrm{Ecm}=1 / 5 \mathrm{GeV}$
- Nuclear and Polarized Targets
- Nuclear Beams: Produce QGP in Rest Frame ofTarget Nucleus
- Study Dynamics at extreme rapidities: $X_{F}=-I$ New domain!
- Secondary Beams -- Even B and D
- Diffraction on Nucleons and Nucleus
- Cosmic Ray Simulations
- 7 TeV proton beam, 3 TeV nuclear beams
- Full Range of Nuclear and Polarized Targets
- Cosmic Ray simulations
- Sterile Neutrinos -- Dark Matter Candidates
- Single-Spin Asymmetries, Transversity Studies, AN
- High-x x_{F} Dynamics --Correlations, Diffraction
- High-x x_{F} Heavy Quark and quarkonium phenomena
- Production of ceq to ccc to bbb baryons
- Quark-Gluon Plasma in Nuclear Rest System: e.g. Ridge Physics at Extreme Rapidities
- Anti-Shadowing: Flavor Specific?
- Higgs at Threshold using nuclear Fermi motion

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

Fixed $\tau=t+z / c$
$x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}$

$\psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)$

$$
\sum_{i}^{n} x_{i}=1
$$

Invariant under boosts! Independent of $\left.P^{\mu}\right|^{\sum_{i}^{n} \vec{k}_{\perp i}=\overrightarrow{0}_{\perp}}$

Each element of flash photograph illuminated at same LF time

$$
\tau=t+z / c
$$

Causal, frame-independent
Evolve in LF time

$$
P^{-}=i \frac{d}{d \tau}
$$

Eigenstate - independent of τ

$$
\begin{gathered}
H_{L F}=P^{+} P^{-}-\vec{P}_{\perp}^{2} \\
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}>
\end{gathered}
$$

Exact frame-independent formulation of nomperturbative QCD!

$$
\begin{aligned}
& L^{Q C D} \rightarrow H_{L F}^{Q C D} \\
& H_{L F}^{Q C D}=\sum_{i}\left[\frac{m^{2}+k_{\perp}^{2}}{x}\right]_{i}+H_{L F}^{i n t} \\
& H_{L F}^{i n t} \text { : Matrix in Fock Space } \\
& H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}> \\
& \left|p, J_{z}>=\sum \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}> \\
& n=3 \\
& \text { Eigenvalues and Eigensolutions give Hadronic Spectrum } \\
& \text { and Light-Front wavefunctions } \\
& \text { (a) } \\
& \text { (b) } \\
& \text { (c) }
\end{aligned}
$$

LFWFs: Off-shell in P - and invariant mass

LIGHT-FRONT MATRIX EQUATION

G.P. Lepage, sjb

Rigorous Method for Solving Non-Perturbative QCD!

$$
\begin{aligned}
& \left(M_{\pi}^{2}-\sum_{i} \frac{\vec{k}_{1 i}^{2}+m_{i}^{2}}{x_{i}}\right)\left[\begin{array}{c}
\psi_{q \bar{q} / \pi} \\
\psi_{g \bar{q} g / \pi} \\
\vdots
\end{array}\right]=\left[\begin{array}{ccc}
\langle q \bar{q}| V|q \bar{q}\rangle & \langle q \bar{q}| V|q \bar{q} g\rangle & \cdots \\
\langle q \bar{q} g| V|q \bar{q}\rangle & \langle q \bar{q} g| V|q \bar{q} g\rangle & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
\psi_{q \bar{q} / \pi} \\
\psi_{q \bar{q} g / \pi} \\
\vdots
\end{array}\right] \\
& A^{+}=0
\end{aligned}
$$

Minkowski space; frame-independent, no fermion doubling; no ghosts

- Light-Front Vacuum = Vacuum ofFree Hamiltonian!

Causal, Frame-Independent
Possible zero modes

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

sum over states with $n=3,4, \ldots$ constituents
The Light Front Fock State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ}.

The light-cone momentum fraction

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp}
$$

Intrinsic heavy quarks $c(x), \boldsymbol{b}(x)$ at bigh x !

$$
\begin{aligned}
& \bar{s}(x) \neq s(x) \\
& \bar{u}(x) \neq \bar{d}(x)
\end{aligned}
$$

\qquad

Light-Front Wavefunctions: rigorous representation of composite

 systems in quantum field theory$$
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}
$$

$$
\text { Fixed } \tau=t+z / c
$$

$$
P^{+}, \vec{P}_{\perp}
$$

$$
\begin{array}{c:c}
x_{i} P^{+}, x_{i} \vec{P}_{\perp}+\vec{k}_{\perp i} \\
& n=3
\end{array}
$$

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \quad \sum_{i}^{n} x_{i}=1
$$

$$
\text { Invariant under boosts! Independent of }\left.\mathbb{P}^{\mu}\right|^{\sum_{i}^{n} \vec{k}_{\perp i}=\overrightarrow{0}_{\perp}}
$$

Bethe-Salpeter WF integrated over \mathbf{k}^{-}
Measured in DIS
Off-shell amplitude -- arbitrarily off-shell in invariant mass!

Angular Momentum on the Light-Front

$$
J^{z}=\sum_{i=1}^{n} s_{i}^{z}+\sum_{j=1}^{n-1} l_{j}^{z} . \quad \underset{\substack{\text { LF Fock- State byy Fock- } \\
\text { Every Vertex }}}{\begin{array}{c}
\text { Conserved }
\end{array}}
$$

$l_{j}^{z}=-\mathrm{i}\left(k_{j}^{1} \frac{\partial}{\partial k_{j}^{2}}-k_{j}^{2} \frac{\partial}{\partial k_{j}^{1}}\right)$

n-1 orbital angular momenta

Parke-Taylor Amplitudes Stasto
Nonzero Anomatous Moment -->Nonzero orbital angular momentum Drell, sjb

Static

Dynamic

- Square of Target LFWFs
- No Wilson Line
- Probability Distributions
- Process-Independent
- T-even Observables
- No Shadowing, Anti-Shadowing
- Sum Rules: Momentum and J
- DGLAP Evolution; mod. at large x
- No Diffractive DIS

Modified by Rescattering: ISI \& FSI
Contains Wilson Line, Phases
No Probabilistic Interpretation
Process-Dependent - From Collision
T-Odd (Sivers, Boer-Mulders, etc.)
Shadowing, Anti-Shadowing, Saturation
Sum Rules Not Proven
DGLAP Evolution
Hard Pomeron and Odderon Diffractive DIS

Hwang, Schmidt, sjb,

Mulders, Boer

Qiu, Sterman
Collins, Qiu
Pasquini, Xiao, Yuan, sjb

QCD and the LF Hadron Wavefunctions

- LF wavefunctions play the role of Schrödinger wavefunctions in Atomic Physics
- LFWFs=Hadron Eigensolutions: Direct Connection to QCD Lagrangian

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

- Relativistic, frame-independent: no boosts, no disc contraction, Melosh built into LF spinors
- Hadronic observables computed from LFWFs: Form factors, Structure Functions, Distribution Amplitudes, GPDs, TMDs, Weak Decays, modulo `lensing' from ISIs, FSIs
- Cannot compute current matrix elements using instant or point form from eigensolutions alone -- need to include vacuum currents!
- Hadron Physics without LFWFs is like Biology without DNA!
- Hadron Physics without LFWFs is like Biology without DNA!

$H_{Q C D}^{L F}$

QCD Meson Spectrum

$$
\left(H_{L F}^{0}+H_{L F}^{I}\right)\left|\Psi>=M^{2}\right| \Psi>
$$

$$
\left[\frac{\vec{k}_{\perp}^{2}+m^{2}}{x(1-x)}+V_{\mathrm{eff}}^{L F}\right] \psi_{L F}\left(x, k_{\perp}\right)=M^{2} \psi_{L F}\left(x, \vec{k}_{\perp}\right)
$$

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{m^{2}}{x(1-x)}+\frac{-1+4 L^{2}}{\zeta^{2}}+U(\zeta, S, L)\right] \psi_{L F}(\zeta)=M^{2} \psi_{L F}(\zeta) \quad \zeta^{2}=x(1-x) b_{\perp}^{2}
$$

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Semiclassical first approximation to QCD
Confining AdS/QCD potential

Prediction from AdS/CFT: Meson LFWF

de Teramond, sjb

 "Soft Wall"

 "Soft Wall" model

 model}
J. R. Forshaw,
R. Sandapen

$$
\psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x})} e^{-\frac{k_{\perp}^{2}}{2 \kappa^{2} x(1-x)}}
$$

$$
\phi_{M}\left(x, Q_{0}\right) \propto \sqrt{x(1-x)}
$$

Connection of Confinement to TMDs
Wavefunctions functions of invariant mass

$$
\frac{k_{\perp}^{2}}{x(1-x)}
$$

AdS/QCD Holographic Wave Function for the ρ Meson and Diffractive ρ Meson Electroproduction

J. R. Forshaw*

Consortium for Fundamental Physics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
R. Sandapen ${ }^{\dagger}$

Département de Physique et d'Astronomie, Université de Moncton, Moncton, New Brunswick E1A3E9, Canada (Received 5 April 2012; published 20 August 2012)

We show that anti-de Sitter/quantum chromodynamics generates predictions for the rate of diffractive

$$
\begin{aligned}
\phi(x, \zeta) & =\mathcal{N} \frac{\kappa}{\sqrt{\pi}} \sqrt{x(1-x)} \exp \left(-\frac{\kappa^{2} \zeta^{2}}{2}\right) \\
\tilde{\phi}(x, k) & \propto \frac{1}{\sqrt{x(1-x)}} \exp \left(-\frac{M_{q \bar{q}}^{2}}{2 \kappa^{2}}\right)
\end{aligned}
$$

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

sum over states with $n=3,4, \ldots$ constituents
The Light Front Fock State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ}.

The light-cone momentum fraction

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp}
$$

Intrinsic heavy quarks $c(x), \boldsymbol{b}(x)$ at bigh x !

$$
\begin{aligned}
& \bar{s}(x) \neq s(x) \\
& \bar{u}(x) \neq \bar{d}(x)
\end{aligned}
$$

\qquad

$$
\bar{d}(x) / \bar{u}(x) \text { for } 0.015 \leq x \leq 0.35
$$

■ E866/NuSea (Drell-Yan)

$$
\bar{d}(x) \neq \bar{u}(x)
$$

$$
s(x) \neq \bar{s}(x)
$$

Intrinsic glue, sea,

 heavy quarks

AFTER

Stan Brodsky, SLAC

DGLAP / Photon-Gluon Fusion: factor of 30 too small

D0
Measurement of $\gamma+\boldsymbol{b}+\boldsymbol{X}$ and $\gamma+\boldsymbol{c}+\boldsymbol{X}$ Production Cross Sections in $p \bar{p}$ Collisions at $\sqrt{s}=1.96 \mathrm{TeV}$

$$
p \bar{p} \rightarrow \gamma+Q+X
$$

$$
\begin{gathered}
\frac{\Delta \sigma(\bar{p} p \rightarrow \gamma c X)}{\Delta \sigma(\bar{p} p \rightarrow \gamma b X)} \\
\text { Ratio is } \\
\text { insensitive to } \\
\text { gluon PDF, scales }
\end{gathered}
$$

Measurement of $\gamma+\boldsymbol{b}+\boldsymbol{X}$ and $\gamma+\boldsymbol{c}+\boldsymbol{X}$ Production Cross Sections in $p \bar{p}$ Collisions at $\sqrt{s}=1.96 \mathrm{TeV}$

$$
\frac{\Delta \sigma(\bar{p} p \rightarrow \gamma c X)}{\Delta \sigma(\bar{p} p \rightarrow \gamma b X)}
$$

Ratio insensitive to gluon PDF, scales

Signal for

 significant IC at $\mathrm{x}>0$.I ?Need to evolve with massive quark!

ECT* ${ }^{*}$, February 8, 2013
AFTER

Stan Brodsky, SLAC

HERMES: Two components to $s\left(x, Q^{2}\right)$!

W. C. Chang and J.-C. Peng arXiv:IIO5.238I

Comparison of the HERMES $x(s(x)+\bar{s}(x))$ data with the calculations based on the BHPS model. The solid and dashed curves are obtained by evolving the BHPS result to $Q^{2}=2.5 \mathrm{GeV}^{2}$ using $\mu=0.5 \mathrm{GeV}$ and $\mu=0.3 \mathrm{GeV}$, respectively. The normalizations of the calculations are adjusted to fit the data at $x>0.1$ with statistical errors only, denoted by solid circles.

$$
s\left(x, Q^{2}\right)=s\left(x, Q^{2}\right)_{\text {extrinsic }}+s\left(x, Q^{2}\right)_{\text {intrinsic }}
$$

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

sum over states with $n=3,4, \ldots$ constituents
The Light Front Fork State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ}.

The light-cone momentum fraction

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp}
$$

Intrinsic heavy quarks $s(x), c(x), b(x)$ at high x !

$$
\begin{aligned}
& \bar{s}(x) \neq s(x) \\
& \bar{u}(x) \neq \bar{d}(x)
\end{aligned}
$$

\qquad

Proton 5-quark Fork State from gluon splitting Extrinsic Heavy Quarks

$$
c\left(x, Q^{2}\right)_{\text {extrinsic }} \sim(1-x) g\left(x, Q^{2}\right) \sim(1-x)^{5}
$$

Fixed LF time

Proton 5 -quark Fock State : Intrinsic Heavy Quarks

$$
x_{Q} \propto\left(m_{Q}^{2}+k_{\perp}^{2}\right)^{1 / 2_{0}^{\circ}}
$$

Probability $(\mathrm{QED}) \propto \frac{1}{M_{\ell}^{4}} \quad \stackrel{\rightharpoonup}{\nabla}$ Probability $(\mathrm{QCD}) \propto \frac{1}{M_{Q}^{2}}$
Collins, Ellis, Gunion, Mueller, sjb M. Polyakov

Proton Self Energy

QCD predicts
Intrinsic Heavy

$$
x_{Q} \propto\left(m_{Q}^{2}+k_{\perp}^{2}\right)^{1 / 2}
$$ Quarks!

Probability $(\mathrm{QED}) \propto \frac{1}{M_{\ell}^{4}}$

Probability $(\mathrm{QCD}) \propto \frac{1}{M_{Q}^{2}}$

Collins, Ellis, Gunion, Mueller, sjb M. Polyakov, et al.

Hoyer, Peterson, Sakai, sjb

$<p\left|\frac{G_{\mu \nu}^{3}}{m_{Q}^{2}}\right| p>$ vs. $<p\left|\frac{F_{\mu \nu}^{4}}{m_{\ell}^{4}}\right| p>$
$\mid u u d c c>$ Fluctuation in Proton QCD: Probability $\frac{\sim \Lambda_{Q C D}^{2}}{M_{Q}^{2}}$
$\mid e^{+} e^{-} \ell^{+} \ell^{-}>$Fluctuation in Positroniun QED: Probability $\frac{\sim\left(m_{e} \alpha\right)^{4}}{M_{\ell}^{4}}$

OPE derivation - M.Polyakov et al.
$c c$ in Color Octet

Distribution peaks at equal rapidity (velocity)
Therefore heavy particles carry the largest mo-

$$
\widehat{x}_{i}=\frac{m_{\perp i}}{\sum_{j}^{n} m_{\perp j}}
$$ mentum fractions

INTRINSIC CHEVROLETS AT THE SSC

Stisnley J. Brodsky

Stanford Linear Accelerator Center, Stanford University, Stanford CA 94305
John C. Collins
Department of Physics, Illinois Institute of Technology, Chicago IL 60816 and
High Energy Physics Division, Argonne National Laboratory, Argonne IL 60439
Stephen D. Ellis
Department of Physics, FM-15, University of Washington, Seattle WA 98195
John F. Gunion
Department of Physics, University of California, Davis CA 95616
Alfred H. Mueller
Department of Physics, Columbia University, New York NY 10027
$\mathcal{L}_{Q C D}^{e f f}=-\frac{1}{4} F_{\mu \nu a} F^{\mu \nu a}-\frac{g^{2} N_{C}}{120 \pi^{2} M_{Q}^{2}} D_{\alpha} F_{\mu \nu a} D^{\alpha} F^{\mu \nu a}+C \frac{g^{2} N_{C}}{120 \pi^{2} M_{Q}^{2}} F_{\mu}^{a \nu} F_{\nu}^{b \tau} F_{\tau}^{c \mu} f_{a b c}+\mathcal{O}\left(\frac{1}{M_{Q}^{4}}\right)$

Probability of Intrinsic Heavy Quarks ~ 1/M ${ }^{2}{ }_{Q}$

Heavy quark mass expansion and intrinsic charm in light hadrons.
 M. Franz (Ruhr U., Bochum), Maxim V. Polyakov (Ruhr U., Bochum \& St. Petersburg, INP), K. Goeke (Ruhr U., Bochum). Feb 2000

Phys.Rev. D62 (2000) 074024
e-Print: hep-ph/0002240

Abstract: We review the technique of heavy quark mass expansion of various operators made of heavy quark fields using a semiclassical approximation. It corresponds to an operator product expansion in the form of series in the inverse heavy quark mass. This technique applied recently to the axial current is used to estimate the charm content of the η, η^{\prime} mesons and the intrinsic charm contribution to the proton spin. The derivation of heavy quark mass expansion for $\bar{Q} \gamma_{5} Q$ is given here in detail and the expansions of the scalar, vector and tensor current and of a contribution to the energy-momentum tensor are presented as well. The obtained results are used to estimate the intrinsic charm contribution to various observables.

Intrinsic Heavy-Quark Fock States

- Rigorous prediction of QCD, OPE
- Color-Octet Color-Octet Fock State!

- Probability $\quad P_{Q \bar{Q}} \propto \frac{1}{M_{Q}^{2}} \quad P_{Q \bar{Q} Q \bar{Q}} \sim \alpha_{s}^{2} P_{Q \bar{Q}}$

$$
P_{c \bar{c} / p} \simeq 1 \%
$$

- Large Effect at high x
- Greatly increases kinematics of colliders such as Higgs production (Kopeliovich, Schmidt, Soffer, sjb)
- Severely underestimated in conventional parameterizations of heavy quark distributions (Pumplin, Tung)
- Many empirical tests

Comparison of the HERMES $x(s(x)+\bar{s}(x))$ data with the calculations based on the BHPS model. The solid and dashed curves are obtained by evolving the BHPS result to $Q^{2}=2.5 \mathrm{GeV}^{2}$ using $\mu=0.5 \mathrm{GeV}$ and $\mu=0.3 \mathrm{GeV}$, respectively. The normalizations of the calculations are adjusted to fit the data at $x>0.1$ with statistical errors only, denoted by solid circles.

Calculations of the $\bar{c}(x)$ distributions based on the BHPS model. The solid curve corresponds to the calculation using Eq. 1 and the dashed and dotted curves are obtained by evolving the BHPS result to $Q^{2}=75 \mathrm{GeV}^{2}$ using $\mu=3.0 \mathrm{GeV}$, and $\mu=0.5 \mathrm{GeV}$, respectively. The normalization is set at $\mathcal{P}_{5}^{c \bar{c}}=0.01$.

Comparison of the $x(\bar{d}(x)+\bar{u}(x)-s(x)-\bar{s}(x))$ data with the calculations based on the BHPS model. The values of $x(s(x)+\bar{s}(x))$ are from the HERMES experiment [6], and those of $x(\bar{d}(x)+\bar{u}(x))$ are obtained from the PDF set CTEQ6.6 [11]. The solid and dashed curves are obtained by evolving the BHPS result to $Q^{2}=2.5 \mathrm{GeV}^{2}$ using $\mu=0.5 \mathrm{GeV}$ and $\mu=0.3 \mathrm{GeV}$, respectively. The normalization of the calculations are adjusted to fit the data.

Figure 1: Comparison of the $\bar{d}(x)-\bar{u}(x)$ data from Fermilab E866 and HERMES with the calculations based on the BHPS model. Eq. 1 and Eq. 3 were used to calculate the $\bar{d}(x)-\bar{u}(x)$ distribution at the initial scale. The distribution was then evolved to the Q^{2} of the experiments and shown as various curves. Two different initial scales, $\mu=0.5$ and 0.3 GeV , were used for the E866 calculations in order to illustrate the dependence on the choice of the initial scale.

HERMES: Two components to $s\left(x, Q^{2}\right)$!

Comparison of the HERMES $x(s(x)+\bar{s}(x))$ data with the calculations based on the BHPS model. The solid and dashed curves are obtained by evolving the BHPS result to $Q^{2}=2.5 \mathrm{GeV}^{2}$ using $\mu=0.5 \mathrm{GeV}$ and $\mu=0.3 \mathrm{GeV}$, respectively. The normalizations of the calculations are adjusted to fit the data at $x>0.1$ with statistical errors only, denoted by solid circles.

$$
s\left(x, Q^{2}\right)=s\left(x, Q^{2}\right)_{\text {extrinsic }}+s\left(x, Q^{2}\right)_{\text {intrinsic }}
$$

- EMC data: $c\left(x, Q^{2}\right)>30 \times$ DGLAP $Q^{2}=75 \mathrm{GeV}^{2}, x=0.42$
- High $x_{F} p p \rightarrow J / \psi X$
- High $x_{F} p p \rightarrow J / \psi J / \psi X$
- High $x_{F} p p \rightarrow \wedge_{c} X$
- High $x_{F} p p \rightarrow \wedge_{b} X$
- High $x_{F} p p \rightarrow$ ($c c d$) X (SELEX)

IC Structure Function: Critical Measurement for EIC Many interesting spin, charge asymmetry, spectator effects

Leading Hadron Production from Intrinsic Charm

Coalescence of Comoving Charm and Valence Quarks Produce $J / \psi, \Lambda_{c}$ and other Charm Hadrons at High x_{F}

Model simitar to Intrinsic Charm
V. D. Barger, F. Halzen and W. Y. Keung,
"The Central And Diffractive Components Of Charm Production,"

Phys. Rev. D 25, 112 (1982).

ECT* ${ }^{*}$, February 8, 2013
AFTER
Stan Brodsky, SLAC

$$
\left(1-x_{F}\right)^{p}, p=n_{s}-1
$$

$$
\begin{aligned}
& \pi^{-}(d \bar{u}) \rightarrow{ }_{\bar{\Lambda}_{c}(\bar{c} \bar{u} \bar{d})}^{\Lambda_{c}(c u d)} \\
& n_{s}=2+1=3 \\
& \mathrm{p}=2 \\
& \Sigma^{-}(s d d) \rightarrow \Lambda_{c}(c u d) \\
& \begin{array}{l}
n_{s}=3+1=4 \\
p(u u d) \\
\Sigma^{-}(s d d)
\end{array} \Rightarrow \bar{\Lambda}_{c}(\bar{c} \bar{u} \bar{d}) \\
& \begin{array}{c}
n_{s}=4+2=6 \\
p=5
\end{array} \\
& \text { Phase space gives } \\
& \text { minimum power } p
\end{aligned}
$$

AFTER
ECT* ${ }^{*}$, February 8, 2013

THE $\Lambda_{\mathrm{b}}{ }^{0}$ BEAUTY BARYON PRODUCTION IN PROTON-PROTON

 INTERACTIONS AT $V_{s}=62 \mathrm{GeV}$: A SECOND OBSERVATIONG. Bari, M. Basile, G. Bruni, G. Cara Romeo, R. Casaccia, L. Cifarelli, F. Cindolo, A. Contin, G. D'Alì, C. Del Papa, S. De Pasquale, P. Giusti, G. Iacobucci, G. Maccarrone, T. Massam, R. Nania, F. Palmonari,
G. Sartorelli, G. Susinno, L. Votano and A. Zichichi
CERN, Geneva, Switzerland
Dipartimento di Fisica dell'Università, Bologna, Italy
Dipartimento di Fisica dell'Università, Cosenza, Italy
Istituto di Fisica dell'Università, Palermo, Italy
Istituto Nazionale di Fisica Nucleare, Bologna, Italy Istituto Nazionale di Fisica Nucleare, LNF, Frascati, Italy

Abstract

Another decay mode of the $\Lambda_{\mathrm{b}}{ }^{\circ}$ (open-beauty baryon) state has been observed: $\Lambda_{\mathrm{b}}{ }^{0} \rightarrow \Lambda_{\mathrm{c}}{ }^{+} \pi^{+} \pi^{-} \pi^{-}$. In addition, new results on the previously observed decay channel, $\Lambda_{\mathrm{b}}{ }^{\circ} \rightarrow \mathrm{pD}^{\circ} \pi^{-}$, are reported. These results confirm our previous findings on $\Lambda_{\mathrm{b}}{ }^{\circ}$ production at the ISR. The mass value ($5.6 \mathrm{GeV} / \mathrm{c}^{2}$) is found to be in good agreement with theoretical predictions. The production mechanism is found to be "leading".

First Evidence for Intrinsic Bottom!

$$
p p \rightarrow \Lambda_{b}(b u d) B(\bar{b} q) X \text { at large } x_{F}
$$

CERN-ISR R422 (Split Field Magnet), 1988/1991

$$
\Lambda_{b}^{0} \rightarrow p D^{0} \pi^{-}
$$

$\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{+} \pi^{-} \pi^{-}$
II Nuovo Cimento 104, 1787
First Evidence for Intrinsic Bottom!

Look for $D_{s}^{-}(\bar{c} s)$ vs. $D_{s}^{+}(c \bar{s})$ asymmetry
Reflects s vs. \bar{s} asymmetry in proton $\mid u u d c \bar{c} s \bar{s}>$ Fock LF state.

Production of a Double-Charm Baryon SELEX high $\mathbf{x}_{\mathbf{F}} \quad\left\langle x_{F}\right\rangle=0.33$

Doubly Charmed Baryons

BARYONS WITH HIGHEST SPIN ($\mathrm{J}=3 / 2$)

- Re-Analyzed Data
- Restrict to Σ^{-}-Beam
- Peak wider than Resolution
- Half decay to $\Xi_{c c}^{+}$(3520)
- Still working on Details

Produce enture set of Heavy Baryons up to bb

(B)
 AFTER@LHC

Intrinsic Charm Mechanism for Inclusive High-X ${ }_{F}$ Quarkonium Production

Goldhaber, Kopeliovich, Soffer, Schmidt, sjb

Quarkonia can have $\mathbf{8 0 \%}$ of Proton Momentum!
Color-octet IC interacts at front surface of nucleus
IC can explains large excess of quarkonia at large x_{F}, A-dependence

Intrinsic Heavy Quark Contribution to Quarkonium Hadroproduction at High XF

Maximal Wavefunction Strength at Minimal $\quad x_{i} \propto \frac{m_{\perp i}}{\sum_{j} m_{\perp j}}$
Invariant Mass : Equal Rapidity

Intrinsic Charm Mechanism for

 Exclusive Diffraction Production

$$
\begin{gathered}
\mathrm{p} \mathrm{p} \rightarrow J / \psi p p \\
x_{J / \psi}=x_{c}+x_{c}
\end{gathered}
$$

Exclusive Diffractive High-X ${ }_{\text {F }}$ Higgs Production

Kopeliovitch, Schmidt, Soffer, sjb

Intrinsic $c c$ pair formed in color octet 8_{C} in proton wavefunction Large Color Dipole
Collision produces color-singlet J / ψ through color exchange

RHIC Experiment

Production of Two Quarkonia at High X_{F}

All events have $x_{\psi \psi}^{F}>0.4$!

Fig. 3. The $\psi \psi$ pair distributions are shown in (a) and (c) for the pion and proton projectiles. Similarly, the distributions of J / ψ 's from the pairs are shown in (b) and (d). Our calculations are compared with the $\pi^{-} N$ data at 150 and $280 \mathrm{GeV} / c$ [1]. The $x_{\psi \psi} \psi$ distributions are normalized to the number of pairs from both pion beams (a) and the number of pairs from the 400 GeV proton measurement (c). The number of single J / ψ 's is twice the number of pairs.

NA3 Data

Excludes `color drag' model

$$
\begin{gathered}
\pi A \rightarrow J / \psi J / \psi X \\
\text { R. Vogt, sjb }
\end{gathered}
$$

The probability distribution for a general n-particle intrinsic $c \bar{c}$ Fock state as a function of x and k_{T} is written as

$$
\begin{aligned}
& \frac{d P_{\mathrm{ic}}}{\prod_{i=1}^{n} d x_{i} d^{2} k_{T, i}} \\
& \quad=N_{n} \alpha_{s}^{4}\left(M_{c \bar{c}}\right) \frac{\delta\left(\sum_{i=1}^{n} k_{T, i}\right) \delta\left(1-\sum_{i=1}^{n} x_{i}\right)}{\left(m_{h}^{2}-\sum_{i=1}^{n}\left(m_{T, i}^{2} / x_{i}\right)\right)^{2}},
\end{aligned}
$$

Violation of factorization in charm hadroproduction.
P. Hoyer, M. Vanttinen (Helsinki U.) , U. Sukhatme (Illinois U., Chicago) . HU-TFT-90-14, May 1990. 7pp. Published in Phys.Lett.B246:217-220,1990
IC Explains large excess of quarkonia at large $\mathrm{x}_{\mathrm{F}}, \mathbf{A}$-dependence

NA60 pA data @ 158GeV

Clear dependence on x_{F} and
beam energy

Heavy Quark Anomalies

Nuclear dependence of J / ψ hadroproduction Violates PQCD Factorization: $A^{\alpha}\left(x_{F}\right)$ not $A^{\alpha}\left(x_{2}\right)$ Huge $A^{2 / 3}$ effect at large x_{F}
J / ψ nuclear dependence vrs rapidity, $X_{A u}, \times F$
PHENIX compared to lower energy measurements

Violates PQCD
factorization!

$$
\frac{d \sigma}{d x_{F}}(p A \rightarrow J / \psi X)
$$

Hoyer, Sukhatme, Vanttinen

Kopeliovich,
Color-Opaque IC Fock state schmidt, Soffer, sjb interacts on nuclear front surface

Scattering on front-face nucleon produces color-singlet c $\bar{c} p a i r$

$$
\frac{d \sigma}{d x_{F}}(p A \rightarrow J / \psi X)=A^{2 / 3} \times \frac{d \sigma}{d x_{F}}(p N \rightarrow J / \psi X)
$$

PHENIX compared to lower energy measurements

Violates PQCD factorization!

$$
\frac{d \sigma}{d x_{F}}(p A \rightarrow J / \psi X)
$$

Hoyer, Sukhatme, Vanttinen
Violates PQCD Factorization: $A^{\alpha}\left(x_{F}\right)$ not $A^{\alpha}\left(x_{2}\right)$

$$
\frac{d \sigma}{d x_{F}}(p A \rightarrow J / \psi X)=A^{1} \frac{d \sigma_{1}}{d x_{F}}+A^{2 / 3} \frac{d \sigma_{2 / 3}}{d x_{F}}
$$

$A^{2 / 3}$ component

J. Badier et al, NA3

Excess beyond conventional PQCD subprocesses

- IC Explains Anomalous $\alpha\left(x_{F}\right)$ not $\alpha\left(x_{2}\right)$ dependence of $p A \rightarrow J / \psi X$ (Mueller, Gunion, Tang, SJB)
- Color Octet IC Explains $A^{2 / 3}$ behavior at high x_{F} (NA3, Fermilab)
(Kopeliovitch, Schmidt, Soffer, SJB)
- IC Explains $J / \psi \rightarrow \rho \pi$ puzzle (Karliner, SJB)
- IC leads to new effects in B decay (Gardner, SJB)

Higgs production at $\mathrm{x}_{\mathrm{F}}=0.8$

$$
\gamma p \rightarrow J / \psi p
$$

Chudakov, Hoyer, Laget, sjb

AFTER

Why is IQ Important for Flavor Physics?

- New perspective on fundamental nonperturbative hadron structure
- Charm structure function at high x
- Dominates high \mathbf{x}_{F} charm and charmonium production
- Hadroproduction of new heavy quark states such as ccu, ccd, bcc, bbb, at high \mathbf{x}_{F}
- Intrinsic charm -- long distance contribution to penguin mechanisms for weak decay Gardner, sjb
- $J / \psi \rightarrow \rho \pi \quad$ puzzle explained Karliner, sjb
- Novel Nuclear Effects from color structure of IC, Heavy Ion Collisions
- New mechanisms for high $\mathbf{x F}_{\mathrm{F}}$ Higgs hadroproduction
- Dynamics of b production: LHCb
- Fixed target program at LHC: produce bbb states

Intrinsic Charm Mechanism for Inclusive High- X_{F} Higgs Production

$p p \rightarrow H X$

Also: intrinsic bottom, top
Goldhaber, Kopeliovich, Schmidt, sjb

Higgs can have 8o\% of Proton Momentum!
New search strategy for Higgs

The cross section of the reaction $p p \rightarrow H p+p$ as a function of the Higgs mass. Contributions of IC (dashed line), IB (dotted line), and IT (solid line).

Intrinsic Bottom Contribution to Inclusive

 Higgs Production
X_{F}
Goldhaber, Kopeliovich, Schmidt, sjb
AFTER

Need for a quarkonium observatory

- To put an end to production controversies (since 1995 !), we need
- a study of direct J / ψ yield (χ_{c} only measured in pp by CDF and PHENIX)
- a study of direct $\mathrm{Y}(n S)$ (χ_{b} only measured in $p p$ by CDF (1 point))
- a study of the polarisation of direct yields
(at least in 2 frames or 2D distrib.)
- + probably associated production
- $\chi_{c, b}$ production is badly known, even worse for the η_{c}
- The latter are potentially better probes of glue in $p p$
- LO processes are $g g \rightarrow\left\{\begin{array}{c}\chi_{c, b, 2} \\ \eta_{c, b}\end{array}\right.$
- For that, we need
- high stats
\rightarrow wide acceptance (also help not to bias 1D polarisation analyses)
- a vertex detector
- state-of-the-art calorimetry for $\gamma\left(\chi_{Q} \rightarrow{ }^{3} S_{1}+\gamma, \eta_{c} \rightarrow \gamma \gamma\right)$
- adapted triggers (Big issue for CMS and ATLAS)

A Fixed Target ExpeRiment: A quarkonium observatory

- Interpolating the world data set:
- Rates expected at RHIC in 2011: $J / \psi: 10^{6}$ in $p p, Y: 10^{4}$ in $p p$
- 2-3 orders of magnitude higher here

Liq. H^{2} (1m)	0.610^{9}	10^{6}
Liq. $\mathrm{D}^{\mathbf{2}}$	1.510^{9}	2310^{5}
Be	0.210^{9}	2.710^{5}
Cu	0.810^{9}	1310^{5}
W	1.710^{9}	2710^{5}
Pb	1. 10^{9}	1610^{5}

- Probe of the (very) large x in the target
- AIM/HOPE: Extract $g\left(x, Q^{2}\right)$ with Q^{2} as low as $10 \mathrm{GeV}^{2}$ from $x=10^{-3}$ up to \simeq one

A Fixed Target ExpeRiment: a quarkonium observatory in PbA

Observation of J / ψ sequential suppression seems to be hindered by

- the Cold Nuclear Matter effects: non trivial and
... not well-known, after all
- the difficulty to observe directly the excited states which would melt before the ground states
- χ_{c} never studied in $A A$ collisions
- $\psi(2 S)$ not yet studied in AA collisions at RHIC and the LHC
- the possibilities for $c \bar{C}$ recombination
- Open charm studies are difficult where recombination matters most
i.e. at low P_{T}
- Only indirect indications -from the y and P_{T} dependence of $R_{A A^{-}}$ that recombination may be at work
- CNM effects may show a non-trivial y and P_{T} dependence too!
- not clear what v_{2} tells us

Why is Intrinsic Charm Important for Flavor Physics?

- New perspective on fundamental nonperturbative hadron structure
- Charm structure function at high \mathbf{x}
- Dominates high \mathbf{x}_{F} charm and charmonium production
- Hadroproduction of new heavy quark states such as ccu, ccd at high $\mathbf{x F}$
- Intrinsic charm -- long distance contribution to penguin mechanisms for weak decay
- Novel Nuclear Effects from color structure of IC, Heavy Ion Collisions
- New mechanisms for high $\mathbf{x}_{\mathbf{F}}$ Higgs hadroproduction
- Dynamics of ${ }^{\text {b }}$ production: LHCb
- Fixed target program at LHC: produce bbb states

Dúrect Subprocesses

- Explains Drell Yan polarization at high x_{F}
- Hadrons produced directly without jet hadronization
- Explains power-laws at fixed x_{T}
- Energy efficient; minimal $\mathrm{x}_{1}, \mathrm{x}_{2}$; large rate
- Color Transparent; Explains Baryon-Anomaly in Heavy-Ion collisions; change of power with centrality; depletion of sameside yield

$\pi^{-} N \rightarrow \mu^{+} \mu^{-} X$ at $80 \mathrm{GeV} / c$

$$
\frac{d \sigma}{d \Omega} \propto 1+\lambda \cos ^{2} \theta+\rho \sin 2 \theta \cos \phi+\omega \sin ^{2} \theta \cos 2 \phi
$$

$$
\frac{d^{2} \sigma}{d x_{\pi} d \cos \theta} \propto x_{\pi}\left(\left(1-x_{\pi}\right)^{2}\left(1+\cos ^{2} \theta\right)+\frac{4}{9} \frac{\left\langle k_{T}^{2}\right\rangle}{M^{2}} \sin ^{2} \theta\right)
$$

$$
\left\langle k_{T}^{2}\right\rangle=0.62 \pm 0.16 \mathrm{GeV}^{2} / c^{2}
$$

$$
Q^{2}=M^{2}
$$

Dramatic change in angular distribution at large x_{F}

Example of a higher-twist direct subprocess

 Many Tests at AFTER

Chicago-Princeton Collaboration

Phys.Rev.Lett.55:2649,1985

$$
\pi \mathrm{N} \rightarrow \mu^{+} \mu^{-} \mathrm{X} \text { at high } \mathrm{x}_{\mathrm{F}}
$$

In the limit where $\left(1-\mathrm{x}_{\mathrm{F}}\right) \mathrm{Q}^{2}$ is fixed as $\mathrm{Q}^{2} \rightarrow \infty$

Distribution amplitude from AdS/CFT

Entire pion wf contributes to hard process

Similar higher twist terms injet hadronization at large z

Hoyer Vanttinen Stan Brodsky, SLAC

Initial State Interaction

Pion appears directly in subprocess at large x_{F}

All of the pion's momentum is transferred to the lepton pair Lepton Pair is produced longitudinally polarized

Bjorken, Kogut, Soper; Blankenbecler, Gunion, sjb;
Blankenbecler, Schmidt

$$
\begin{aligned}
& \text { Crucial Test of Leading -Twist QCD: } \\
& \text { Scaling at fixed } x_{T} \\
& E \frac{d \sigma}{d^{3} p}(p p \rightarrow H X)=\frac{F\left(x_{T}, \theta_{c m}\right)}{p_{T}^{n_{\text {eff }}}} \quad x_{T}=\frac{2 p_{T}}{\sqrt{s}}
\end{aligned}
$$

Parton model: $\mathbf{n}_{\text {eff }}=4$
As fundamental as Bjorken scaling in DIS
scaling law: $\boldsymbol{n}_{\text {eff }}=\mathbf{2} \mathbf{n}_{\text {active }}-\mathbf{4}$

$p p \rightarrow \gamma X$

QCD prediction: Modification of power fall-off due to DGLAP evolution and the Running Coupling
Arleo,

$$
\begin{aligned}
& p p \rightarrow \pi X \\
& p p \rightarrow \gamma X \\
& 5<p_{\perp}<20 \mathrm{GeV}
\end{aligned}
$$

$$
70 \mathrm{GeV}<\sqrt{s}<4 \mathrm{TeV}
$$

$$
\sqrt{s}^{n} E \frac{d \sigma}{d^{3} p}(p p \rightarrow \gamma X) \text { at fixed } x_{T}
$$

$\mathbf{x}_{\mathbf{T}}$-scaling of direct photon production: consistent with PQCD

 available p_{T} range. Shown are data for central ($0-5 \%$) and for peripheral ($60-90 \%$) collisions.

$$
E \frac{d \sigma}{d^{3} p}(p p \rightarrow H X)=\frac{F\left(x_{T}, \theta_{C M}\right)}{p_{T}^{n_{e f f}}}
$$

Photons and Jets

 agree with PQCD $\mathrm{x}_{\mathbf{t}}$ scaling Hadrons do not!- Significant increase of the hadron $n^{\exp }$ with x_{\perp}
- $n^{\exp } \simeq 8$ at large x_{\perp}
- Huge contrast with photons and jets !
- $n^{\exp }$ constant and slight above 4 at all x_{\perp}

Arleo,Hwang, Sickles, sjb

Baryon can be made directly within hard subprocess

S. S. Adler et al. PHENIX Collaboration Phys. Rev. Lett. 91, 172301 (2003). Particle ratio changes with centrality!

Protons less absorbed in nuclear collisions than pions because of dominant color transparent higher twist process
\leftarrow Central
-. Au+Au 0-10\%
$\triangle \Delta A u+A u$ 20-30\%

- $A u+A u 60-92 \%$
$\star \mathrm{p}+\mathrm{p}, \sqrt{\mathrm{s}}=53 \mathrm{GeV}$, ISR
---- $\mathbf{e}^{+} e^{-}$, gluon jets, DELPHI
...... $\mathbf{e}^{+} e^{-}$, quark jets, DELPHI
\leftarrow Peripheral

Tannenbaum:
Baryon Anomaly:

Higher Twist at the LHC

- Fixed x_{T} : powerful analysis of PQCD
- Insensitive to modeling
- Higher twist terms energy efficient since no wasted fragmentation energy
- Evaluate at minimal x_{1} and x_{2} where structure functions are maximal
- Higher Twist competitive despite faster fall-off in \mathbf{p}_{T}
- Direct processes can confuse new physics searches
- Related to Quarkonium Processes -- Jian-wei Qiu
- Bound-state production: Light-Front Wavefunctions, Distribution amplitudes, ERBL evolution.

RHIC/LHC predictions

PHENIX results

Scaling exponents from $\sqrt{s}=500 \mathrm{GeV}$ preliminary data

- Magnitude of Δ and its x_{\perp}-dependence consistent with predictions

$$
\Delta=n_{e x p t}-n_{P Q C D}
$$

Arleo, Hwang, Sickles, sjb

Inclusive invariant cross sections, scaled by $\sqrt{s}^{5.1}$

Dírect pion production at high x_{F}

Interference of multi-gluon exchange: Mechanism for large A_{N}

Formation of Relativistic Anti-Hydrogen

Measured at CERN-LEAR and FermiLab

Coalescence of off-shell co-moving positron and antiproton
Wavefunction maximal at small impact separation and equal rapidity "Hadronization" at the Amplitude Level

Hadronization at the Amplitude Level

Construct helicity amplitude using Light-Front Perturbation theory; coalesce quarks via LFWFs

Hadronization at the Amplitude Level

Baryon Production

$$
\psi\left(x, \vec{k}_{\perp}, \lambda_{i}\right)
$$

Construct helicity amplitude using Light-Front Perturbation theory; coalesce quarks via LFWFs

Features of LF T-Matrix Formalism

"Event Amplitude Generator"

- Same principle as antihydrogen production: off-shell coalescence
- coalescence to hadron favored at equal rapidity, small transverse momenta
- leading heavy hadron production: \mathbf{D} and B mesons produced at large z
- hadron helicity conservation if hadron LFWF has $L^{z}=0$
- Baryon AdS/QCD LFWF has aligned and anti-aligned quark spin

Hot Topics in QCD

- Intrinsic Heavy Quarks
- Breakdown of pQCD Leading-Twist Factorization
- Top/anti-Top asymmetry
- Non-universal antishadowing
- Demise of QCD Vacuum Condensates
- Elimination of the QCD Renormalization Scale Ambiguity
- AdS/QCD and Light-Front Holography

Crucial to Understand QCD to High Precision to

 Illuminate New Physics

Parton level asymmetries at small and large Δy compared to SM prediction of MCFM. The shaded bands represent the total uncertainty in each bin. The negative going uncertainty for $\Delta y<1.0$ is suppressed.

7eary Quark Asymmetr $$
A^{\mathrm{tI}}\left(\Delta y_{i}\right)=\frac{N\left(\Delta y_{i}\right)-N\left(-\Delta y_{i}\right)}{N\left(\Delta y_{i}\right)+N\left(-\Delta y_{i}\right)}
$$

Asymmetries in Δy are identical to those in the t production angle in the $t \bar{t}$ rest frame. We find a parton-level asymmetry of $A^{t \bar{t}}=0.158 \pm 0.075$ (stat+sys), which is somewhat higher than, but not inconsistent with, the NLO QCD expectation of 0.058 ± 0.009.

Fermilab-Pub-10-525-E

Evidence for a Mass Dependent Forward-Backward Asymmetry in Top Quark Pair Production

CDF Collaboration

Eliminating the Renormalization Scale Ambiguity for Top-Pair Production

 Using the 'Principle ofMaximum Conformality' (PMC)
$t \bar{t}$ asymmetry predicted by pQCD NNLO within 1σ of CDF/D0 measurements using PMC/BLM scale setting

Need to set multiple renormalization scales -Lensing, DGLAP, ERBL Evolution

PMC/BLM

No renormalization scale ambiguity!
Result is independent of Renormalization scheme and initial scale!

Same as QED Scale Setting
Apply to Evolution kernels, hard subprocesses

Eliminates unnecessary systematic uncertainty

Xing-Gang Wu Leonardo di Giustino, SJB

Princíple of Maximum Conformality

$$
\begin{gathered}
\mathcal{M}_{e e \rightarrow e e}(++;++)=\frac{8 \pi s}{t} \alpha(t)+\frac{8 \pi s}{u} \alpha(u) \\
\xrightarrow{\alpha} \\
\alpha(t)
\end{gathered}
$$

Gell-Mann--Low Effective Charge

QED Effective Charge

$$
\alpha(t)=\frac{\alpha(0)}{1-\Pi(t)}
$$

All-orders lepton-loop corrections to dressed photon propagator
$\alpha(t)=\frac{\alpha\left(t_{0}\right)}{1-\Pi\left(t, t_{0}\right)}$
$\Pi\left(t, t_{0}\right)=\frac{\Pi(t)-\Pi\left(t_{0}\right)}{1-\Pi\left(t_{0}\right)}$

Initial scale $\mathbf{t}_{\mathbf{t}}$ is arbitrary -- Variation gives RGE Equations Physical renormalization scale t not arbitrary!

Another Example in QED: Muonic Atoms

Scale is unique: Tested to ppm

Gyulassy: Higher Order VP verified to 0.1% precision in $\mu \mathrm{Pb}$

Myths concerning scale setting

- Renormalization scale "unphysical": No optimal physical scale
- Can ignore possibility of multiple physical scales
- Accuracy of PQCD prediction can be judged by taking arbitrary guess with an arbitrary range
- Factorization scale should be taken equal to renormalization scale

$$
\mu_{F}=\mu_{R}
$$

Guessing the scale: Wrong in QED. Scheme dependent!

Features of BLM/PMC Scale Setting

On The Elimination Of Scale Ambiguities In Perturbative Quantum Chromodynamics.

Lepage, Mackenzie, sjb

- "Principle of Maximum Conformality"

Phys.Rev.D28:228,1983

Di Giustino, Mojaza, Wu, sjb

- All terms associated with nonzero beta function summed into running coupling
- Standard procedure in QED
- Resulting series identical to conformal series
- Renormalon n ! growth of PQCD coefficients from beta function eliminated!
- Scheme Independent !!!
- In general, BLM/PMC scales depend on all invariants
- Single Effective PMC scale at NLO

QCD Observables

$\mathcal{O}=C\left(\alpha_{s}\left(\mu_{0}^{2}\right)\right)+B\left(\beta \log \frac{Q^{2}}{\mu_{0}^{2}}\right)+D\left(\frac{m_{q}^{2}}{Q^{2}}\right)+E\left(\frac{\Lambda_{Q C D}^{2}}{Q^{2}}\right)+F\left(\frac{\Lambda_{Q C D}^{2}}{m_{Q}^{2}}\right)+G\left(\frac{m_{q}^{2}}{m_{Q}^{2}}\right)$
Light by Light Loops

BLM/PMC: Absorb β-terms into running coupling

$\mathcal{O}=C\left(\alpha_{s}\left(Q^{* 2}\right)\right)+D\left(\frac{m_{q}^{2}}{Q^{2}}\right)+E\left(\frac{\Lambda_{Q C D}^{2}}{Q^{2}}\right)+F\left(\frac{\Lambda_{Q C D}^{2}}{m_{Q}^{2}}\right)+G\left(\frac{m_{q}^{2}}{m_{Q}^{2}}\right)$

Eliminating the Renormalization Scale Ambiguity for Top-Pair Production

 Using the 'Principle ofMaximum Conformality' (PMC)
$t \bar{t}$ asymmetry predicted by pQCD NNLO within 1σ of CDF/D0 measurements using PMC/BLM scale setting

Conventional PQCD approach

Second Born Corrections to Wide-Angle High-Energy Electron
Pair Production and Bremsstrahlung*
J. Gillespie and sjb PR i73 Ioli (i968)

${ }^{4}$ J. G. Asbury, W. K. Bertram, U. Becker, P. Joos, M. Rohde, A. J. S. Smith, S. Friedlander, C. L. Jordan, and S. C. C. Ting, Phys. Rev. 161, 1344 (1967), and references therein.

$$
\begin{aligned}
\mathcal{R} \equiv & \frac{d \sigma_{\text {int }}}{d \sigma_{\text {Born }}}=\frac{1}{4} Z \alpha \pi|\mathbf{Q}| \\
& \times\left[\frac{\left(E_{2}-E_{1}\right) Q^{2}+2 E_{2} k \cdot p_{2}-2 E_{1} k \cdot p_{1}}{E_{1} E_{2} Q^{2}+\left(k \cdot p_{1}\right)\left(k \cdot p_{2}\right)}\right]+O(Z \alpha)^{3}
\end{aligned}
$$

(spin zero, point nucleus).

QCD Analysis of heavy quark asymmetries

B. von Harling, Y. Zhao, sjb

- Include Radiation Diagrams
- FSI similar to Sivers Effect
$\pi Z \alpha \rightarrow \pi C_{F} \alpha_{s}$
- Renormalization scale relatively soft

QCD Analysis of heavy quark asymmetries

B. von Harling, Y. Zhao, sjb

- Include Radiation Diagrams
- FSI similar to Sivers Effect
$\pi Z \alpha \rightarrow \pi C_{F} \alpha_{s}$
- Renormalization scale relatively soft

$H_{Q C D}^{L F}$

QCD Meson Spectrum

$\left(H_{L F}^{0}+H_{L F}^{I}\right)\left|\Psi>=M^{2}\right| \Psi>$
$\left[\frac{\vec{k}_{\perp}^{2}+m^{2}}{x(1-x)}+V_{\mathrm{eff}}^{L F}\right] \psi_{L F^{\prime}}\left(x, \vec{k}_{\perp}\right)=M^{2} \psi_{L F}\left(x, \vec{k}_{\perp}\right)$

Coupled Fork states

Effective two-particle equation

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Semiclassical first approximation to QCD
Confining AdS/QCD potential

Light-Front Holography and Non-Perturbative QCD

Goal:

Use AdS/QCD duality to construct a first approximation to QCD

Hadron Spectrum Light-Front Wavefunctions, Running coupling in IR

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

in collaboration with Guy de Teramond

Direct Mapping of the 5th Dimension of AdS Space to Physical Space-Time at Fixed Light-Front Time

Light-Front Schrödinger Equation

G. de Teramond, sjb

Relativistic LF single-variable radial equation for QCD \& QED

Frame Independent!
$\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{m^{2}}{x(1-x)}+\frac{-1+4 L^{2}}{\zeta^{2}}+U(\zeta, S, L)\right] \psi_{L F}(\zeta)=M^{2} \psi_{L F}(\zeta)$
$\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2}$.

AdS/QCD:
$(1-x)$

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

U is the exact $Q C D$ potential
 Conjecture: 'H'-diagrams generate \mathbf{U}

Fig: Orbital and radial AdS modes in the soft wall model for $\kappa=0.6 \mathrm{GeV}$.

Soft Wall Model

Orbital and radial excitations for the $\pi(\kappa=0.59 \mathrm{GeV}$) and the $\rho \mathrm{l}=1$ meson families ($\kappa=0.54 \mathrm{GeV}$)

- $J=L+S, I=1$ meson families $\mathcal{M}_{n, L, S}^{2}=4 \kappa^{2}(n+L+S / 2)$

Same slope in n and L

$$
\begin{aligned}
& 4 \kappa^{2} \text { for } \Delta n=1 \\
& 4 \kappa^{2} \text { for } \Delta L=1 \\
& 2 \kappa^{2} \text { for } \Delta S=1
\end{aligned}
$$

8820A24
$\mathrm{I}=1$ orbital and radial excitations for the $\pi(\kappa=0.59 \mathrm{GeV})$ and the ρ-meson families ($\kappa=0.54 \mathrm{GeV}$)

- Triplet splitting for the $I=1, L=1, J=0,1,2$, vector meson a-states

$$
\mathcal{M}_{a_{2}(1320)}>\mathcal{M}_{a_{1}(1260)}>\mathcal{M}_{a_{0}(980)}
$$

Hadron Form Factors from AdS/CFT

Propagation of external perturbation suppressed inside AdS.

$$
\begin{aligned}
J(Q, z) & =z Q K_{1}(z Q) \\
F\left(Q^{2}\right)_{I \rightarrow F} & =\int \frac{d z}{z^{3}} \Phi_{F}(z) J(Q, z) \Phi_{I}(z)
\end{aligned}
$$

Polchinski, Strassler de Teramond, sjb

Consider a specific AdS mode $\Phi^{(n)}$ dual to an n partonic Fock state $|n\rangle$. At small z, Φ scales as $\Phi^{(n)} \sim z^{\Delta_{n}}$. Thus:

$$
F\left(Q^{2}\right) \rightarrow\left[\frac{1}{Q^{2}}\right]^{\tau-1}
$$

where $\tau=\Delta_{n}-\sigma_{n}, \sigma_{n}=\sum_{i=1}^{n} \sigma_{i}$. The twist is equal to the number of partons, $\tau=n$.

Holographic Mapping of AdS Modes to QCD LFWFs

- Integrate Soper formula over angles:

$$
F\left(q^{2}\right)=2 \pi \int_{0}^{1} d x \frac{(1-x)}{x} \int \zeta d \zeta J_{0}\left(\zeta q \sqrt{\frac{1-x}{x}}\right) \tilde{\rho}(x, \zeta)
$$

with $\widetilde{\rho}(x, \zeta)$ QCD effective transverse charge density.

- Transversality variable

$$
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}
$$

- Compare AdS and QCD expressions of FFs for arbitrary Q using identity:

$$
\int_{0}^{1} d x J_{0}\left(\zeta Q \sqrt{\frac{1-x}{x}}\right)=\zeta Q K_{1}(\zeta Q)
$$

the solution for $J(Q, \zeta)=\zeta Q K_{1}(\zeta Q)$!

- Propagation of external current inside AdS space described by the AdS wave equation

$$
\left[z^{2} \partial_{z}^{2}-z\left(1+2 \kappa^{2} z^{2}\right) \partial_{z}-Q^{2} z^{2}\right] J_{\kappa}(Q, z)=0
$$

- Solution bulk-to-boundary propagator

$$
J_{\kappa}(Q, z)=\Gamma\left(1+\frac{Q^{2}}{4 \kappa^{2}}\right) U\left(\frac{Q^{2}}{4 \kappa^{2}}, 0, \kappa^{2} z^{2}\right)
$$

Soft Wall

where $U(a, b, c)$ is the confluent hypergeometric function

$$
\Gamma(a) U(a, b, z)=\int_{0}^{\infty} e^{-z t} t^{a-1}(1+t)^{b-a-1} d t
$$

- Form factor in presence of the dilaton background $\varphi=\kappa^{2} z^{2}$

$$
F\left(Q^{2}\right)=R^{3} \int \frac{d z}{z^{3}} e^{-\kappa^{2} z^{2}} \Phi(z) J_{\kappa}(Q, z) \Phi(z)
$$

- For large $Q^{2} \gg 4 \kappa^{2}$

$$
J_{\kappa}(Q, z) \rightarrow z Q K_{1}(z Q)=J(Q, z)
$$

the external current decouples from the dilaton field.

Note: Analytical Form of Hadronic Form Factor for Arbitrary Twist

- Form factor for a string mode with scaling dimension τ, Φ_{τ} in the SW model

$$
F\left(Q^{2}\right)=\Gamma(\tau) \frac{\Gamma\left(1+\frac{Q^{2}}{4 \kappa^{2}}\right)}{\Gamma\left(\tau+\frac{Q^{2}}{4 \kappa^{2}}\right)}
$$

- For $\tau=N, \quad \Gamma(N+z)=(N-1+z)(N-2+z) \ldots(1+z) \Gamma(1+z)$.
- Form factor expressed as $N-1$ product of poles

$$
\begin{aligned}
& F\left(Q^{2}\right)=\frac{1}{1+\frac{Q^{2}}{4 \kappa^{2}}}, \quad N=2, \\
& F\left(Q^{2}\right)=\frac{2}{\left(1+\frac{Q^{2}}{4 \kappa^{2}}\right)\left(2+\frac{Q^{2}}{4 \kappa^{2}}\right)}, \quad N=3, \\
& F\left(Q^{2}\right)=\frac{\cdots}{\left(1+\frac{Q^{2}}{4 \kappa^{2}}\right)\left(2+\frac{Q^{2}}{4 \kappa^{2}}\right) \cdots\left(N-1+\frac{Q^{2}}{4 \kappa^{2}}\right)}, \quad N .
\end{aligned}
$$

- For large Q^{2} :

$$
F\left(Q^{2}\right) \rightarrow(N-1)!\left[\frac{4 \kappa^{2}}{Q^{2}}\right]^{(N-1)}
$$

Dressed soft-wall current brings in higher Fock states and more vector meson poles
 and Light-Front Holography

Pion Timelike Form Factor. (Includes Twist 2 to 5)

Duality with pQCD? ERBL evolution

Fixed-Target Physics with the LHC Beams

- 7 TeV proton beam, 3 TeV nuclear beams
- Full Range of Nuclear and Polarized Targets
- Cosmic Ray simulations
- Sterile Neutrinos -- Dark Matter Candidates
- Single-Spin Asymmetries, Transversity Studies, AN
- High-x x_{F} Dynamics --Correlations, Diffraction
- High-x x_{F} Heavy Quark and quarkonium phenomena
- Production of ccq to cce to bbb baryons
- Quark-Gluon Plasma in Nuclear Rest System: e.g. Ridge Physics at Extreme Rapidities
- Anti-Shadowing: Flavor Specific?
- Higgs at Threshold using nuclear Fermi motion

High xf at AFTER

- Drell Yan at high x_{F}
- \mathbf{W}, \mathbf{Z}
- Structure Functions at High x
- Direct Processes
- Polarization Correlations
- Intrinsic Heavy Quark Studies
- Diffractive Channels
- Proton Diffraction to 3Jets
- Quarkonium Dynamics
- Open Flavor, B and D

Novel Physics at AFTER,

- Secondary Beams: Pions Kaons, Muons, even B and D
- Pion Exchange: Effective Pion Collisions
- Deuteron Target: Hidden Color
- Spin-Correlations with Polarized Targets
- Huge single spin asymmetries at high $x F$
- pA to Quarkonium -- non-factorizing nuclear dependence
- Breakdown of Factorization: Double Boer-Mulders
- Photon plus Heavy Quark Anomalies
- Shadowing, Antishadowing
- Odderon Search

Fixed Target Physics with the LHC Beams

- Many Novel QCD Effects never thoroughly investigated
- "Lensing" Effects: Exceptions to Factorization Theorems
- Violation of Scaling Laws
- Dynamic versus Static Structure Functions
- Production of charm, bottom and exotics
- Novel Nuclear Dynamics
- Novel Diffractive Processes
- High Rapidity: Maximal Spin, Flavor Correlations
- High AFTER energy domain well-matched to QCD

Nuclear Collisions with AFTER

- Nucleus-Nucleus and Proton-Nucleus Scattering in Lab Frame Look at Target Fragmentation Region $x_{F}=-\mathbf{I}$
- What happens to Target Nucleus when QGP is formed?
- pp pA AA Ridge at extreme rapidity
- What are the critical parameters for the onset of QGP
- Light-Front Description: Frame-Independent
- Use Fool's ISR Frame -- No Lorentz Contraction of LFWF
- Energy Loss Studies, LPM, Non-Abelian
- Quarkonium Production, Polarization
- Open charm, bottom
- Anti-Shadowing is Universal
- ISI and FSI are higher twist effects and universal
- High transverse momentum hadrons arise only from jet fragmentation -- baryon anomaly!
- heavy quarks only from gluon splitting
- renormalization scale cannot be fixed
- QCD condensates are vacuum effects
- Infrared Slavery
- Nuclei are composites of nucleons only
- Real part of DVCS arbitrary

Physics Flagships for AFTER: Fixed \mathbf{T} arget $\mathbf{E x p e R}$ iments @ the LHC

Heavy Quark Physics

Stan Brodsky

AFTER @ LHC

 ECT* WorkshopFebruary 4-8, 2013
European Center for Theoretical Studies in Nuclear Physics and Related Areas

Thanks to the France-Stanford Center for Interdisciplinary Studies

Thanks to: \mathcal{F}-P. Lansberg, F. Fleuret

