Physics Flagships for AFTER: Fixed Target Experiments @ the LHC

Heavy Quark Physics

Stan Brodsky

AFTER @ LHC

ECT* Workshop

February 4-8, 2013

European Center for Theoretical Studies in Nuclear Physics and Related Areas

Thanks to the France-Stanford Center for Interdisciplinary Studies

Thanks to: J.-P. Lansberg, F. Fleuret

A Compelling Idea for QCD:

Utilize the High-Energy LHC proton and nuclear beams in a fixed-target mode

• Nuclear and Polarized Targets

A Fixed-Target ExpeRiment

• Study Dynamics at extreme rapidities: $X_F = -I$

A new hadron physics laboratory for studying and testing QCD

ECT*, February 8, 2013

AFTER

- 7 TeV proton beam collisions on a proton or nuclear target --Extract beam with Crystals -
- Minimal effects on the collider
- Equivalent to Ecm = 115 GeV
- Nuclear and Polarized Targets
- Nuclear Beams: Produce QGP in Rest Frame of Target Nucleus
- Study Dynamics at extreme rapidities: $X_F = -1$ New domain!
- Secondary Beams Even B and D
- Diffraction on Nucleons and Nucleus
- Cosmic Ray Simulations

ECT*, **February 8**, 2013

AFTER

Fixed-Target Physics with the LHC Beams

- 7 TeV proton beam, 3 TeV nuclear beams
- Full Range of Nuclear and Polarized Targets
- Cosmic Ray simulations
- Sterile Neutrinos -- Dark Matter Candidates
- Single-Spin Asymmetries, Transversity Studies, A_N
- High-x_F Dynamics --Correlations, Diffraction
- High-x_F Heavy Quark and quarkonium phenomena
- Production of ccq to ccc to bbb baryons
- Quark-Gluon Plasma in Nuclear Rest System: e.g. Ridge Physics at Extreme Rapidities
- Anti-Shadowing: Flavor Specific?
- Higgs at Threshold using nuclear Fermi motion

ECT*, February 8, 2013

AFTER

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

ECT*, February 8, 2013

AFTER

Each element of flash photograph íllumínated at same LF tíme

 $\tau = t + z/c$

Causal, frame-independent

Evolve in LF time

$$P^- = i \frac{d}{d\tau}$$

Eigenstate -- independent of $\, au$

$$H_{LF} = P^+ P^- - \vec{P}_{\perp}^2$$
$$H_{LF}^{QCD} |\Psi_h \rangle = \mathcal{M}_h^2 |\Psi_h \rangle$$

HELEN BRADLEY - PHOTOGRAPHY

Light-Front QCD

Physical gauge: $A^+ = 0$

(c)

Exact frame-independent formulation of nonperturbative QCD!

Eigenvalues and Eigensolutions give Hadronic Spectrum and Light-Front wavefunctions

LFWFs: Off-shell in P- and invariant mass

LIGHT-FRONT MATRIX EQUATION

G.P. Lepage, sjb

Rígorous Method for Solving Non-Perturbative QCD!

$$\left(M_{\pi}^{2}-\sum_{i}\frac{\vec{k}_{\perp i}^{2}+m_{i}^{2}}{x_{i}}\right)\begin{bmatrix}\psi_{q\bar{q}/\pi}\\\psi_{q\bar{q}g/\pi}\\\vdots\end{bmatrix}=\begin{bmatrix}\langle q\bar{q}|V|q\bar{q}\rangle & \langle q\bar{q}|V|q\bar{q}g\rangle & \cdots\\\langle q\bar{q}g|V|q\bar{q}g\rangle & \langle q\bar{q}g|V|q\bar{q}g\rangle & \cdots\\\vdots & \ddots\end{bmatrix}\begin{bmatrix}\psi_{q\bar{q}/\pi}\\\psi_{q\bar{q}g/\pi}\\\vdots\end{bmatrix}$$

$$A^{+}=0$$

Mínkowskí space; frame-índependent; no fermíon doubling; no ghosts

• Light-Front Vacuum = Vacuum of Free Hamiltonian!

Causal, Frame-Independent

Possible zero modes

 $|p,S_z\rangle = \sum \Psi_n(x_i,\vec{k}_{\perp i},\lambda_i)|n;\vec{k}_{\perp i},\lambda_i\rangle$ n=3

sum over states with n=3, 4, ... constituents

The Light Front Fock State Wavefunctions

$$\Psi_n(x_i, \vec{k}_{\perp i}, \lambda_i)$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ} .

The light-cone momentum fraction

$$x_i = \frac{k_i^+}{p^+} = \frac{k_i^0 + k_i^z}{P^0 + P^z}$$

are boost invariant.

$$\sum_{i=1}^{n} k_{i}^{+} = P^{+}, \ \sum_{i=1}^{n} x_{i} = 1, \ \sum_{i=1}^{n} \vec{k}_{i}^{\perp} = \vec{0}^{\perp}.$$

Intrinsic heavy quarks c(x), b(x) at high x !

$$\overline{\bar{s}(x) \neq s(x)}$$
$$\overline{\bar{u}(x) \neq \bar{d}(x)}$$

Fixed LF time

Hídden Color

Mueller: gluon Fock states BFKL

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

Off-shell amplitude -- arbitrarily off-shell in invariant mass!

Angular Momentum on the Light-Front

$$J^{z} = \sum_{i=1}^{n} s_{i}^{z} + \sum_{j=1}^{n-1} l_{j}^{z}.$$
Conserved
LF Fock-State by Fock-State
Every Vertex

$$l_j^z = -i\left(k_j^1 \frac{\partial}{\partial k_j^2} - k_j^2 \frac{\partial}{\partial k_j^1}\right)$$

n-1 orbital angular momenta

Parke-Taylor Amplítudes **Stasto** Nonzero Anomalous Moment -->Nonzero orbítal angular momentum **Drell, sjb**

Static

- Square of Target LFWFs
- No Wilson Line
- Probability Distributions
- Process-Independent
- T-even Observables
- No Shadowing, Anti-Shadowing
- Sum Rules: Momentum and J^z
- DGLAP Evolution; mod. at large x
- No Diffractive DIS

Dynamic

Modified by Rescattering: ISI & FSI Contains Wilson Line, Phases No Probabilistic Interpretation Process-Dependent - From Collision T-Odd (Sivers, Boer-Mulders, etc.) Shadowing, Anti-Shadowing, Saturation Sum Rules Not Proven

C DGLAP Evolution

Hard Pomeron and Odderon Diffractive DIS

Hwang, Schmidt, sjb,

Mulders, Boer

Qiu, Sterman

Collins, Qiu

Pasquini, Xiao, Yuan, sjb

ECT*, **February 8**, 2013

AFTER

QCD and the LF Hadron Wavefunctions

- LF wavefunctions play the role of Schrödinger wavefunctions in Atomic Physics
- LFWFs=Hadron Eigensolutions: Direct Connection to QCD Lagrangian
- Relativistic, frame-independent: no boosts, no disc contraction, Melosh built into LF spinors
- Hadronic observables computed from LFWFs: Form factors, Structure Functions, Distribution Amplitudes, GPDs, TMDs, Weak Decays, modulo `lensing' from ISIs, FSIs
- Cannot compute current matrix elements using instant or point form from eigensolutions alone -- need to include vacuum currents!
- Hadron Physics without LFWFs is like Biology without DNA!

ECT*, **February 8**, 2013

AFTER

• Hadron Physics without LFWFs is like Biology without DNA!

ECT*, **February 8**, 2013

AFTER

$$U(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (L + S - 1)$$

Semiclassical first approximation to QCD

Confining AdS/QCD potential

Prediction from AdS/CFT: Meson LFWF

$$\psi_M(x,k_{\perp}) = \frac{4\pi}{\kappa\sqrt{x(1-x)}} e^{-\frac{k_{\perp}^2}{2\kappa^2 x(1-x)}}$$

$$\phi_M(x,Q_0) \propto \sqrt{x(1-x)}$$

 k^{2}

x(1-x)

Connection of Confinement to TMDs Wavefunctions functions of invariant mass

AdS/QCD Holographic Wave Function for the ρ Meson and Diffractive ρ Meson Electroproduction

J. R. Forshaw*

Consortium for Fundamental Physics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom

R. Sandapen[†]

Département de Physique et d'Astronomie, Université de Moncton, Moncton, New Brunswick E1A3E9, Canada (Received 5 April 2012; published 20 August 2012)

We show that anti-de Sitter/quantum chromodynamics generates predictions for the rate of diffractive

$$\phi(x,\zeta) = \mathcal{N}\frac{\kappa}{\sqrt{\pi}}\sqrt{x(1-x)}\exp\left(-\frac{\kappa^2\zeta^2}{2}\right),$$

$$\tilde{\phi}(x,k) \propto \frac{1}{\sqrt{x(1-x)}} \exp\left(-\frac{M_{q\bar{q}}^2}{2\kappa^2}\right),$$

Wavefunctions functions of invariant mass

 $|p,S_z\rangle = \sum \Psi_n(x_i,\vec{k}_{\perp i},\lambda_i)|n;\vec{k}_{\perp i},\lambda_i\rangle$ n=3

sum over states with n=3, 4, ... constituents

The Light Front Fock State Wavefunctions

$$\Psi_n(x_i, \vec{k}_{\perp i}, \lambda_i)$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ} .

The light-cone momentum fraction

$$x_i = \frac{k_i^+}{p^+} = \frac{k_i^0 + k_i^z}{P^0 + P^z}$$

are boost invariant.

$$\sum_{i=1}^{n} k_{i}^{+} = P^{+}, \ \sum_{i=1}^{n} x_{i} = 1, \ \sum_{i=1}^{n} \vec{k}_{i}^{\perp} = \vec{0}^{\perp}.$$

Intrinsic heavy quarks c(x), b(x) at high x !

$$\overline{\bar{s}(x) \neq s(x)}$$
$$\overline{\bar{u}(x) \neq \bar{d}(x)}$$

Fixed LF time

Hídden Color

Mueller: gluon Fock states BFKL

 $\bar{d}(x)/\bar{u}(x)$ for $0.015 \le x \le 0.35$

E866/NuSea (Drell-Yan)

 $\bar{d}(x) \neq \bar{u}(x)$

$$s(x) \neq \bar{s}(x)$$

Intrínsíc glue, sea, heavy quarks

ECT*, **February 8**, 2013

AFTER

DGLAP / Photon-Gluon Fusion: factor of 30 too small

ECT*, **February 8**, 2013

AFTER

week ending 15 MAY 2009

Measurement of $\gamma + b + X$ and $\gamma + c + X$ Production Cross Sections in $p\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

ECT*, **February 8**, 2013

AFTER

HERMES: Two components to s(x,Q²)!

Comparison of the HERMES $x(s(x) + \bar{s}(x))$ data with the calculations based on the BHPS model. The solid and dashed curves are obtained by evolving the BHPS result to $Q^2 = 2.5 \text{ GeV}^2$ using $\mu = 0.5 \text{ GeV}$ and $\mu = 0.3 \text{ GeV}$, respectively. The normalizations of the calculations are adjusted to fit the data at x > 0.1 with statistical errors only, denoted by solid circles.

 $s(x, Q^2) = s(x, Q^2)_{\text{extrinsic}} + s(x, Q^2)_{\text{intrinsic}}$

 $|p,S_z\rangle = \sum \Psi_n(x_i,\vec{k}_{\perp i},\lambda_i)|n;\vec{k}_{\perp i},\lambda_i\rangle$ n=3

 $\overline{s}(x) \neq s(x)$ $\overline{u}(x) \neq \overline{d}(x)$

sum over states with n=3, 4, ... constituents

The Light Front Fock State Wavefunctions

$$\Psi_n(x_i, \vec{k}_{\perp i}, \lambda_i)$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ} .

The light-cone momentum fraction

$$x_i = \frac{k_i^+}{p^+} = \frac{k_i^0 + k_i^z}{P^0 + P^z}$$

are boost invariant.

$$\sum_{i=1}^{n} k_{i}^{+} = P^{+}, \ \sum_{i=1}^{n} x_{i} = 1, \ \sum_{i=1}^{n} \vec{k}_{i}^{\perp} = \vec{0}^{\perp}.$$

Intrinsic heavy quarks s(x), c(x), b(x) at high x !

Fixed LF time p

Proton 5-quark Fock State from gluon splíttíng Extrínsíc Heavy Quarks

 $c(x, Q^2)_{\text{extrinsic}} \sim (1 - x)g(x, Q^2) \sim (1 - x)^5$

Fixed LF time

Proton 5-quark Fock State : Intrínsíc Heavy Quarks

p

 $x_Q \propto (m_Q^2 + k_\perp^2)^{1/2}$

Probability (QED) $\propto \frac{1}{M_{\star}^4}$

QCD predicts Intrinsic Heavy Quarks at high x!

Probability (QCD) $\propto \frac{1}{M_{\odot}^2}$

Collins, Ellis, Gunion, Mueller, sjb M. Polyakov

Probability (QED) $\propto \frac{1}{M_{\ell}^4}$ Probability (QCD) $\propto \frac{1}{M_{\ell}^2}$

Collins, Ellis, Gunion, Mueller, sjb M. Polyakov, et al. Hoyer, Peterson, Sakai, sjb

|uudcc > Fluctuation in Proton QCD: Probability $\frac{\sim \Lambda_{QCD}^2}{M_Q^2}$

 $|e^+e^-\ell^+\ell^->$ Fluctuation in Positronium QED: Probability $\frac{\sim (m_e \alpha)^4}{M_\ell^4}$

OPE derivation - M.Polyakov et al.

$$\mbox{ vs. }$$

cc in Color Octet

Distribution peaks at equal rapidity (velocity) Therefore heavy particles carry the largest momentum fractions

$$\hat{x}_i = \frac{m_{\perp i}}{\sum_j^n m_{\perp j}}$$

High x charm!Charm at ThresholdAction Principle: Minimum KE, maximal potential

ECT*, February 8, 2013

AFTER

INTRINSIC CHEVROLETS AT THE SSC

Select an Option
Select Make

Stanley J. Brodsky

Seftemford Linear Accelerator Center, Stanford University, Stanford CA 94305 Zip

John C. Collins

Department of Physics, Illinois Institute of Technology, Chicago IL 60616 and High Energy Physics Division, Argonne National Laboratory, Argonne IL 60439

Stephen D. Ellis

Department of Physics, FM-15, University of Washington, Seattle WA 98195

John F. Gunion

Department of Physics, University of California, Davis CA 95616

Alfred H. Mueller

Department of Physics, Columbia University, New York NY 10027

Probability of Intrinsic Heavy Quarks ~ $1/M^2_Q$

Published in Snowmass Summer Study 1984:0227 (CD184:S7:1984)

Chevy Aveo Overstocked

Heavy quark mass expansion and intrinsic charm in light hadrons.

M. Franz (Ruhr U., Bochum), Maxim V. Polyakov (Ruhr U., Bochum & St. Petersburg, INP), K. Goeke (Ruhr U., Bochum). Feb 2000

Phys.Rev. D62 (2000) 074024 e-Print: hep-ph/0002240

Abstract: We review the technique of heavy quark mass expansion of various operators made of heavy quark fields using a semiclassical approximation. It corresponds to an operator product expansion in the form of series in the inverse heavy quark mass. This technique applied recently to the axial current is used to estimate the charm content of the η, η' mesons and the intrinsic charm contribution to the proton spin. The derivation of heavy quark mass expansion for $\bar{Q}\gamma_5 Q$ is given here in detail and the expansions of the scalar, vector and tensor current and of a contribution to the energy-momentum tensor are presented as well. The obtained results are used to estimate the intrinsic charm contribution to various observables.

ECT*, February 8, 2013

AFTER

Hoyer, Peterson, Sakai, sjb

Intrínsic Heavy-Quark Fock States

- Rigorous prediction of QCD, OPE
- Color-Octet Color-Octet Fock State!

- Probability $P_{Q\bar{Q}} \propto \frac{1}{M_Q^2}$ $P_{Q\bar{Q}Q\bar{Q}} \sim \alpha_s^2 P_{Q\bar{Q}}$ $P_{c\bar{c}/p} \simeq 1\%$
- Large Effect at high x
- Greatly increases kinematics of colliders such as Higgs production (Kopeliovich, Schmidt, Soffer, sjb)
- Severely underestimated in conventional parameterizations of heavy quark distributions (Pumplin, Tung)
- Many empirical tests

ECT*, February 8, 2013

AFTER

Comparison of the HERMES $x(s(x) + \bar{s}(x))$ data with the calculations based on the BHPS model. The solid and dashed curves are obtained by evolving the BHPS result to $Q^2 = 2.5 \text{ GeV}^2$ using $\mu = 0.5 \text{ GeV}$ and $\mu = 0.3 \text{ GeV}$, respectively. The normalizations of the calculations are adjusted to fit the data at x > 0.1 with statistical errors only, denoted by solid circles.

ECT*, **February 8**, 2013

AFTER

Calculations of the $\bar{c}(x)$ distributions based on the BHPS model. The solid curve corresponds to the calculation using Eq. 1 and the dashed and dotted curves are obtained by evolving the BHPS result to $Q^2 = 75 \text{ GeV}^2$ using $\mu = 3.0 \text{ GeV}$, and $\mu = 0.5 \text{ GeV}$, respectively. The normalization is set at $\mathcal{P}_5^{c\bar{c}} = 0.01$.

Comparison of the $x(\bar{d}(x) + \bar{u}(x) - s(x) - \bar{s}(x))$ data with the calculations based on the BHPS model. The values of $x(s(x) + \bar{s}(x))$ are from the HERMES experiment [6], and those of $x(\bar{d}(x) + \bar{u}(x))$ are obtained from the PDF set CTEQ6.6 [11]. The solid and dashed curves are obtained by evolving the BHPS result to $Q^2 = 2.5 \text{ GeV}^2$ using $\mu = 0.5 \text{ GeV}$ and $\mu = 0.3 \text{ GeV}$, respectively. The normalization of the calculations are adjusted to fit the data.

ECT*, **February 8**, 2013

AFTER

Figure 1: Comparison of the $\bar{d}(x) - \bar{u}(x)$ data from Fermilab E866 and HERMES with the calculations based on the BHPS model. Eq. 1 and Eq. 3 were used to calculate the $\bar{d}(x) - \bar{u}(x)$ distribution at the initial scale. The distribution was then evolved to the Q^2 of the experiments and shown as various curves. Two different initial scales, $\mu = 0.5$ and 0.3 GeV, were used for the E866 calculations in order to illustrate the dependence on the choice of the initial scale.

X

HERMES: Two components to s(x,Q²)!

Comparison of the HERMES $x(s(x) + \bar{s}(x))$ data with the calculations based on the BHPS model. The solid and dashed curves are obtained by evolving the BHPS result to $Q^2 = 2.5 \text{ GeV}^2$ using $\mu = 0.5 \text{ GeV}$ and $\mu = 0.3 \text{ GeV}$, respectively. The normalizations of the calculations are adjusted to fit the data at x > 0.1 with statistical errors only, denoted by solid circles.

 $s(x, Q^2) = s(x, Q^2)_{\text{extrinsic}} + s(x, Q^2)_{\text{intrinsic}}$

• EMC data:
$$c(x,Q^2) > 30 \times DGLAP$$

 $Q^2 = 75 \text{ GeV}^2$, $x = 0.42$

• High $x_F \ pp \to J/\psi X$

• High $x_F \ pp \rightarrow J/\psi J/\psi X$

• High $x_F pp \rightarrow \Lambda_c X$

• High $x_F \ pp \to \Lambda_b X$

• High $x_F pp \rightarrow \Xi(ccd)X$ (SELEX)

IC Structure Function: Critical Measurement for EIC Many interesting spin, charge asymmetry, spectator effects

ECT*, **February 8**, 2013

AFTER

Leading Hadron Production from Intrinsic Charm

Coalescence of Comoving Charm and Valence Quarks Produce J/ψ , Λ_c and other Charm Hadrons at High x_F

ECT*, February 8, 2013

AFTER

Model símilar to Intrínsic Charm

V. D. Barger, F. Halzen and W. Y. Keung, "The Central And Diffractive Components Of Charm Production,"

Phys. Rev. D 25, 112 (1982).

ECT*, February 8, 2013

AFTER

SELEX Collaboration / Physics Letters B 528 (2002) 49-57

ECT*, **February 8**, 2013

AFTER

 $\Lambda_c(cud)$ $\pi^{-}(d\bar{u}) \rightarrow \Lambda_{c(\bar{c}\bar{u}\bar{d})}$ $n_s = 2 + 1 = 3$ p=2 $\Sigma^{-}(sdd) \rightarrow \Lambda_{c}(cud)$ $n_s = 3 + 1 = 4$ p(uud) $\rightarrow \bar{\Lambda}_c(\bar{c}\bar{u}\bar{d})$ $\Sigma^{-}(sdd)$

 $n_s = 4 + 2 = 6$ p=5 Phase space gives minimum power p

ECT*, **February 8**, 2013

AFTER

27 May 1991

CM-P00063074

THE Λ_b° BEAUTY BARYON PRODUCTION IN PROTON-PROTON INTERACTIONS AT $\sqrt{s}=62$ GeV: A SECOND OBSERVATION

G. Bari, M. Basile, G. Bruni, G. Cara Romeo, R. Casaccia, L. Cifarelli,
F. Cindolo, A. Contin, G. D'Alì, C. Del Papa, S. De Pasquale, P. Giusti,
G. Iacobucci, G. Maccarrone, T. Massam, R. Nania, F. Palmonari,
G. Sartorelli, G. Susinno, L. Votano and A. Zichichi

CERN, Geneva, Switzerland Dipartimento di Fisica dell'Università, Bologna, Italy Dipartimento di Fisica dell'Università, Cosenza, Italy Istituto di Fisica dell'Università, Palermo, Italy Istituto Nazionale di Fisica Nucleare, Bologna, Italy Istituto Nazionale di Fisica Nucleare, LNF, Frascati, Italy

Abstract

Another decay mode of the Λ_b^{o} (open-beauty baryon) state has been observed: $\Lambda_b^{o} \rightarrow \Lambda_c^{+} \pi^{+} \pi^{-} \pi^{-}$. In addition, new results on the previously observed decay channel, $\Lambda_b^{o} \rightarrow p D^{o} \pi^{-}$, are reported. These results confirm our previous findings on Λ_b^{o} production at the ISR. The mass value (5.6 GeV/c²) is found to be in good agreement with theoretical predictions. The production mechanism is found to be "leading".

First Evidence for Intrinsic Bottom!

$pp \to \Lambda_b(bud) B(\overline{b}q) X$ at large x_F

CERN-ISR R422 (Split Field Magnet), 1988/1991

First Evidence for Intrinsic Bottom!

ECT*, **February 8**, 2013

AFTER

Look for $D_s^-(\bar{c}s)$ vs. $D_s^+(c\bar{s})$ asymmetry

Reflects s vs. \bar{s} asymmetry in proton $|uudc\bar{c}s\bar{s}\rangle$ Fock LF state.

ECT*, February 8, 2013

AFTER

Production of a Double-Charm Baryon

SELEX high x_F $< x_F >= 0.33$

Doubly Charmed Baryons

BARYONS WITH HIGHEST SPIN (J = 3/2)

ECT*, February 8, 2013	AFTE	R	Stan Brodsky, SLAC
	Jürgen Engelfried	DCB	4/6

 $\Xi_{cc}(3780)^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$

- Re-Analyzed Data
- Restrict to Σ^- –Beam
- Peak wider than Resolution
- Half decay to $\Xi_{cc}^+(3520)$
- Still working on Details

< ロ ト < 団 ト < 茎 ト < 茎 ト 三 の < ()</p>

Produce entire set of Heavy Baryons up to bbb

ECT*, February 8, 2013

AFTER

Intrínsic Charm Mechanism for Inclusive Hígh-X_F Quarkonium Production

Goldhaber, Kopeliovich, Soffer, Schmidt, sjb

Quarkonia can have 80% of Proton Momentum!

Color-octet IC interacts at front surface of nucleus

IC can explains large excess of quarkonia at large x_F, A-dependence

ECT*, **February 8**, 2013

AFTER

Intrínsic Heavy Quark Contribution to Quarkonium Hadroproduction at High x_F

Lansberg, sjb

Maximal Wavefunction Strength at Minimal Invariant Mass : Equal Rapidity

Intrinsic Charm Mechanism for Exclusive Diffraction Production

$$p p \rightarrow J/\psi p p$$

$$x_{J/\Psi} = x_c + x_c$$

Exclusive Diffractive High-X_F Higgs Production

Kopeliovitch, Schmidt, Soffer, sjb

Intrinsic cc pair formed in color octet 8_C in pro-ton wavefunctionLarge Color DipoleCollision produces color-singlet J/ψ throughcolor exchangeRHIC Experiment

ECT*, February 8, 2013

AFTER

Production of Two Quarkonia at High x_F

ECT*, February 8, 2013

AFTER

All events have $x_{\psi\psi}^F > 0.4$!

Excludes `color drag' model

 $\pi A \rightarrow J/\psi J/\psi X$ R. Vogt, sjb

The probability distribution for a general *n*-particle intrinsic $c\overline{c}$ Fock state as a function of x and k_T is written as

$$\frac{dP_{ic}}{\prod_{i=1}^{n} dx_{i} d^{2} k_{T,i}} = N_{n} \alpha_{s}^{4} (M_{c\overline{c}}) \frac{\delta(\sum_{i=1}^{n} \boldsymbol{k}_{T,i}) \delta(1 - \sum_{i=1}^{n} x_{i})}{(m_{h}^{2} - \sum_{i=1}^{n} (m_{T,i}^{2}/x_{i}))^{2}},$$

Fig. 3. The $\psi\psi$ pair distributions are shown in (a) and (c) for the pion and proton projectiles. Similarly, the distributions of J/ψ 's from the pairs are shown in (b) and (d). Our calculations are compared with the $\pi^- N$ data at 150 and 280 GeV/c [1]. The $x_{\psi\psi}$ distributions are normalized to the number of pairs from both pion beams (a) and the number of pairs from the 400 GeV proton measurement (c). The number of single J/ψ 's is twice the number of pairs.

NA₃ Data

ECT*, **February 8**, 2013

AFTER

M. Leitch

$$\frac{d\sigma}{dx_F}(pA \to J/\psi X)$$

Remarkably Strong Nuclear Dependence for Fast Charmonium

Violation of PQCD Factorization

Violation of factorization in charm hadroproduction.

P. Hoyer, M. Vanttinen (Helsinki U.), U. Sukhatme (Illinois U., Chicago). HU-TFT-90-14, May 1990. 7pp. Published in Phys.Lett.B246:217-220,1990

IC Explains large excess of quarkonia at large x_F, A-dependence

ECT*, February 8, 2013

AFTER

@ 158GeV

5

(fm)

Clear dependence on x_F and beam energy

Heavy Quark Anomalies

Nuclear dependence of J/ψ hadroproduction Violates PQCD Factorization: $A^{\alpha}(x_F)$ not $A^{\alpha}(x_2)$ Huge $A^{2/3}$ effect at large x_F

 J/ψ nuclear dependence vrs rapidity, x_{AU} , x_{F}

M.Leitch

PHENIX compared to lower energy measurements

Hoyer, Sukhatme, Vanttinen

ECT*, **February 8**, 2013

AFTER

Kopeliovich, Color-Opaque IC Fock state Schmidt, Soffer, sjb ínteracts on nuclear front surface

Scattering on front-face nucleon produces color-singlet $c\overline{c}$ pair No absorption of Octet-Octet IC Fock State small color-singlet \mathcal{C} \overline{C} p g A

$$\frac{d\sigma}{dx_F}(pA \to J/\psi X) = A^{2/3} \times \frac{d\sigma}{dx_F}(pN \to J/\psi X)$$

ECT*, February 8, 2013

AFTER

 J/ψ nuclear dependence vrs rapidity, x_{AU} , x_{F}

M.Leitch

PHENIX compared to lower energy measurements

Hoyer, Sukhatme, Vanttinen

Violates PQCD Factorization: $A^{\alpha}(x_F)$ not $A^{\alpha}(x_2)$

Excess beyond conventional PQCD subprocesses

• IC Explains Anomalous $\alpha(x_F)$ not $\alpha(x_2)$ dependence of $pA \rightarrow J/\psi X$ (Mueller, Gunion, Tang, SJB)

• Color Octet IC Explains $A^{2/3}$ behavior at high x_F (NA3, Fermilab) Color Opaqueness (Kopeliovitch, Schmidt, Soffer, SJB)

• IC Explains
$$J/\psi \rightarrow \rho \pi$$
 puzzle (Karliner, SJB)

• IC leads to new effects in *B* decay (Gardner, SJB)

Higgs production at x_F = 0.8

ECT*, **February 8**, 2013

AFTER

 $\gamma p \rightarrow J/\psi p$

Chudakov, Hoyer, Laget, sjb

ECT*, **February 8**, 2013

AFTER

Why is IQ Important for Flavor Physics?

- New perspective on fundamental nonperturbative hadron structure
- Charm structure function at high x
- Dominates high x_F charm and charmonium production
- Hadroproduction of new heavy quark states such as ccu, ccd, bcc, bbb, at high x_F
- Intrinsic charm -- long distance contribution to penguin mechanisms for weak decay Gardner, sjb
- $J/\psi \to
 ho \pi$ puzzle explained Karliner, sjb
- Novel Nuclear Effects from color structure of IC, Heavy Ion Collisions
- New mechanisms for high x_F Higgs hadroproduction
- Dynamics of b production: LHCb New Multi-lepton Signals
- Fixed target program at LHC: produce bbb states

ECT*, February 8, 2013

AFTER

Intrínsic Charm Mechanism for Inclusive Hígh-X_F Híggs Production

New search strategy for Higgs

ECT*, **February 8**, 2013

AFTER

The cross section of the reaction $pp \rightarrow Hp + p$ as a function of the Higgs mass. Contributions of IC (dashed line), IB (dotted line), and IT (solid line).

Intrinsic Bottom Contribution to Inclusive Higgs Production

Need for a quarkonium observatory

- To put an end to production controversies (since 1995 !), we need
 - a study of direct J/ψ yield (χ_c only measured in *pp* by CDF and PHENIX)
 - a study of direct Y(nS) (χ_b only measured in *pp* by CDF (1 point))
 - a study of the polarisation of direct yields

(at least in 2 frames or 2D distrib.)

- + probably associated production
- $\chi_{c,b}$ production is badly known, even worse for the η_c
- The latter are potentially better probes of glue in pp
- LO processes are $gg \rightarrow \begin{cases} \chi_{c,b,2} \\ \eta_{c,b} \end{cases}$
- For that, we need
 - high stats
 - \rightarrow wide acceptance (also help not to bias 1D polarisation analyses)
 - a vertex detector
 - state-of-the-art calorimetry for $\gamma (\chi_Q \rightarrow {}^3S_1 + \gamma, \eta_c \rightarrow \gamma\gamma)$
 - adapted triggers (Big issue for CMS and ATLAS)

AFTER

A Fixed Target ExpeRiment: A quarkonium observatory

- Interpolating the world data set:
- Rates expected at RHIC in 2011: J/ψ : 10⁶ in *pp*, Y: 10⁴ in *pp*
- 2-3 orders of magnitude higher here (RHIC yields are much lower in dAu compared to pA here)
- Numbers are for only one unit of y about 0
- Unique access in the backward region
- Probe of the (very) large x in the target
- AIM/HOPE: Extract $g(x, Q^2)$ with Q^2 as low as 10 GeV²

	Target	$N_{J/\Psi}(y^{-1})$ $N_{J/\Psi} = A \mathcal{L} \sigma_{\Psi}$	$N_{\Upsilon}(y^{-1})$ $N_{Y} = A \mathcal{L} \sigma_{Y}$ per unit of rapidity)
	Liq. H ²	0.6 10 ⁹	10 ⁶
	Liq. D ²	1.5 10 ⁹	23 10 ⁵
	Ве	0.2 10 ⁹	2.7 10 ⁵
)	Cu	0.8 10 9	13 10 ⁵
)	W	1.7 10 9	27 10 ⁵
	Pb	1. 10 ⁹	16 10 ⁵
A Fixed Target ExpeRiment: a quarkonium observatory in PbA

Observation of J/ψ sequential suppression seems to be hindered by

• the Cold Nuclear Matter effects: non trivial and

... not well-known, after all

- the difficulty to observe directly the excited states which would melt before the ground states
 - χ_c never studied in AA collisions
 - $\psi(2S)$ not yet studied in AA collisions at RHIC and the LHC
- the possibilities for *cc̄* recombination
 - Open charm studies are difficult where recombination matters most i.e. at low P_T
 - Only indirect indications –from the y and P_T dependence of R_{AA} that recombination may be at work
 - CNM effects may show a non-trivial y and P_T dependence too !
 - not clear what v₂ tells us

Why is Intrinsic Charm Important for Flavor Physics?

- New perspective on fundamental nonperturbative hadron structure
- Charm structure function at high x
- Dominates high x_F charm and charmonium production
- Hadroproduction of new heavy quark states such as ccu, ccd at high x_F
- Intrinsic charm -- long distance contribution to penguin mechanisms for weak decay
- Novel Nuclear Effects from color structure of IC, Heavy Ion Collisions
- New mechanisms for high x_F Higgs hadroproduction
- Dynamics of b production: LHCb
- Fixed target program at LHC: produce bbb states

ECT*, February 8, 2013

AFTER

Dírect Subprocesses

- Explains Drell Yan polarization at high x_F
- Hadrons produced directly without jet hadronization
- Explains power-laws at fixed x_T
- Energy efficient; minimal x₁,x₂; large rate
- Color Transparent; Explains Baryon-Anomaly in Heavy-Ion collisions; change of power with centrality; depletion of same-side yield

$$\pi^- N \rightarrow \mu^+ \mu^- X$$
 at 80 GeV/c

$$\frac{d\sigma}{d\Omega} \propto 1 + \lambda \cos^2\theta + \rho \sin^2\theta \cos\phi + \omega \sin^2\theta \cos^2\phi.$$

$$\frac{d^2\sigma}{dx_{\pi}d\cos\theta} \propto x_{\pi} \left[(1-x_{\pi})^2 (1+\cos^2\theta) + \frac{4}{9} \frac{\langle k_T^2 \rangle}{M^2} \sin^2\theta \right]$$

$$\langle k_T^2 \rangle = 0.62 \pm 0.16 \text{ GeV}^2/c^2$$

 $Q^2 = M^2$

Dramatic change in angular distribution at large x_F

Example of a higher-twist direct subprocess Many Tests at AFTER

ECT*, **February 8**, 2013

AFTER

Collaboration

Phys.Rev.Lett.55:2649,1985

Berger, Lepage, sjb

ECT*, **February 8**, 2013

AFTER

Bjorken, Kogut, Soper; Blankenbecler, Gunion, sjb; Blankenbecler, Schmidt

Crucial Test of Leading -Twist QCD: Scaling at fixed x_T

$$E\frac{d\sigma}{d^3p}(pp \to HX) = \frac{F(x_T, \theta_{cm})}{p_T^{n_{eff}}} \qquad x_T = \frac{2p_T}{\sqrt{s}}$$

Parton model: $n_{eff} = 4$

As fundamental as Bjorken scaling in DIS

scaling law: $n_{eff} = 2 n_{active} - 4$

QCD prediction: Modification of power fall-off due to DGLAP evolution and the Running Coupling

$\sqrt{s}^n E \frac{d\sigma}{d^3 p} (pp \to \gamma X)$ at fixed x_T

Tannenbaum

Protons produced in AuAu collisions at RHIC do not exhibit clear scaling properties in the available p_T range. Shown are data for central (0-5%) and for peripheral (60-90%) collisions.

ECT*, **February 8**, 2013

AFTER

 $E\frac{d\sigma}{d^3p}(pp \to HX) = \frac{F(x_T, \theta_{CM})}{p_T^{n_{eff}}}$

Photons and Jets agree with PQCD x_T scaling Hadrons do not!

イロト イロト イヨト イヨト

• Significant increase of the hadron $n^{
m exp}$ with x_{\perp}

- $n^{
 m exp} \simeq 8$ at large x_{\perp}
- Huge contrast with photons and jets !
 - n^{exp} constant and slight above 4 at all x_{\perp}

Arleo, Hwang, Sickles, sjb

Baryon can be made directly within hard subprocess

S. S. Adler *et al.* PHENIX Collaboration *Phys. Rev. Lett.* **91**, 172301 (2003). *Particle ratio changes with centrality!*

ECT*, **February 8**, 2013

AFTER

Higher Twist at the LHC

- Fixed x_T: powerful analysis of PQCD
- Insensitive to modeling
- Higher twist terms energy efficient since no wasted fragmentation energy
- Evaluate at minimal x1 and x2 where structure functions are maximal
- Higher Twist competitive despite faster fall-off in pT
- Direct processes can confuse new physics searches
- Related to Quarkonium Processes -- Jian-wei Qiu
- Bound-state production: Light-Front Wavefunctions, Distribution amplitudes, ERBL evolution.

ECT*, **February 8**, 2013

AFTER

RHIC/LHC predictions

PHENIX results

Scaling exponents from $\sqrt{s} = 500$ GeV preliminary data

A. Bezilevsky, APS Meeting

50

• Magnitude of Δ and its x_{\perp} -dependence consistent with predictions

 $\Delta = n_{expt} - n_{PQCD}$

Arleo, Hwang, Sickles, sjb

Direct pion production at high x_F

Interference of multi-gluon exchange: Mechanism for large A_N

Formation of Relativistic Anti-Hydrogen

Measured at CERN-LEAR and FermiLab

Wavefunction maximal at small impact separation and equal rapidity

"Hadronization" at the Amplitude Level

ECT*, **February 8**, 2013

AFTER

Hadronization at the Amplitude Level

Construct helicity amplitude using Light-Front Perturbation theory; coalesce quarks via LFWFs

ECT*, **February 8**, 2013

AFTER

Hadronization at the Amplitude Level

Construct helicity amplitude using Light-Front Perturbation theory; coalesce quarks via LFWFs

ECT*, **February 8**, 2013

AFTER

Features of LF T-Matrix Formalism "Event Amplitude Generator"

- Same principle as antihydrogen production: off-shell coalescence
- coalescence to hadron favored at equal rapidity, small transverse momenta
- leading heavy hadron production: D and B mesons produced at large z
- hadron helicity conservation if hadron LFWF has L^z =0
- Baryon AdS/QCD LFWF has aligned and anti-aligned quark spin

Hot Topics in QCD

- Intrinsic Heavy Quarks
- Breakdown of pQCD Leading-Twist Factorization
- Top/anti-Top asymmetry
- Non-universal antishadowing
- Demise of QCD Vacuum Condensates
- Elimination of the QCD Renormalization Scale Ambiguity
- AdS/QCD and Light-Front Holography

Crucial to Understand QCD to High Precision to Illuminate New Physics

ECT*, February 8, 2013

AFTER

Heavy Quark Asymmetries

$$A^{t\bar{t}}(\Delta y_i) = \frac{N(\Delta y_i) - N(-\Delta y_i)}{N(\Delta y_i) + N(-\Delta y_i)}$$

Asymmetries in Δy are identical to those in the *t* production angle in the $t\bar{t}$ rest frame. We find a parton-level asymmetry of $A^{t\bar{t}} = 0.158 \pm 0.075$ (stat+sys), which is somewhat higher than, but not inconsistent with, the NLO QCD expectation of 0.058 ± 0.009 .

Parton level asymmetries at small and large Δy compared to SM prediction of MCFM. The shaded bands represent the total uncertainty in each bin. The negative going uncertainty for $\Delta y < 1.0$ is suppressed.

Evidence for a Mass Dependent Forward-Backward Asymmetry in Top Quark Pair Production

CDF Collaboration

Fermilab-Pub-10-525-E

Eliminating the Renormalization Scale Ambiguity for Top-Pair Production Using the 'Principle of Maximum Conformality' (PMC)

 $t\bar{t}$ asymmetry predicted by pQCD NNLO within 1 σ of CDF/D0 measurements using PMC/BLM scale setting

ECT*, February 8, 2013

AFTER

Need to set multiple renormalization scales --Lensing, DGLAP, ERBL Evolution ...

PMC/BLM

No renormalization scale ambiguity!

Result is independent of Renormalization scheme and initial scale!

Same as QED Scale Setting

Apply to Evolution kernels, hard subprocesses

Eliminates unnecessary systematic uncertainty

Xing-Gang Wu Leonardo di Giustino, SJB

Principle of Maximum Conformality

ECT*, February 8, 2013

AFTER

Gell-Mann--Low Effective Charge

ECT*, February 8, 2013

AFTER

Initial scale t_o is arbitrary -- Variation gives RGE Equations Physical renormalization scale t not arbitrary!

ECT*, **February 8**, 2013

AFTER

Another Example in QED: Muonic Atoms

Scale is unique: Tested to ppm

Gyulassy: Higher Order VP verified to 0.1% precision in μ Pb

ECT*, February 8, 2013

AFTER

Myths concerning scale setting

- Renormalization scale "unphysical": No optimal physical scale
- Can ignore possibility of multiple physical scales
- Accuracy of PQCD prediction can be judged by taking arbitrary guess with an arbitrary range
- Factorization scale should be taken equal to renormalization scale

 $\mu_F = \mu_R$

Guessing the scale: Wrong in QED. Scheme dependent!

ECT*, **February 8**, 2013

AFTER

Features of BLM/PMC Scale Setting

On The Elimination Of Scale Ambiguities In Perturbative Quantum Chromodynamics.

Lepage, Mackenzie, sjb

Phys.Rev.D28:228,1983

• "Principle of Maximum Conformality"

Di Giustino, Mojaza, Wu, sjb

- All terms associated with nonzero beta function summed into running coupling
- Standard procedure in QED
- Resulting series identical to conformal series
- Renormalon n! growth of PQCD coefficients from beta function eliminated!
- Scheme Independent !!!
- In general, BLM/PMC scales depend on all invariants
- Single Effective PMC scale at NLO

QCD Observables

BLM/PMC: Absorb β-terms into running coupling

$$\mathcal{O} = C(\alpha_s(Q^{*2})) + D(\frac{m_q^2}{Q^2}) + E(\frac{\Lambda_{QCD}^2}{Q^2}) + F(\frac{\Lambda_{QCD}^2}{m_Q^2}) + G(\frac{m_q^2}{m_Q^2})$$

ECT*, February 8, 2013

AFTER

Eliminating the Renormalization Scale Ambiguity for Top-Pair Production Using the 'Principle of Maximum Conformality' (PMC)

 $t\bar{t}$ asymmetry predicted by pQCD NNLO within 1 σ of CDF/D0 measurements using PMC/BLM scale setting

ECT*, February 8, 2013

AFTER

Conventional pQCD approach
Second Born Corrections to Wide-Angle High-Energy Electron J. Gillespie and sjb Pair Production and Bremsstrahlung*

(b) (d) (c) (a) (b) (e) (h)

⁴ J. G. Asbury, W. K. Bertram, U. Becker, P. Joos, M. Rohde, A. J. S. Smith, S. Friedlander, C. L. Jordan, and S. C. C. Ting, Phys. Rev. 161, 1344 (1967), and references therein.

$$\mathfrak{R} \equiv \frac{d\sigma_{\text{int}}}{d\sigma_{\text{Born}}} = \frac{1}{4} Z \alpha \pi |\mathbf{Q}|$$

$$\times \left[\frac{(E_2 - E_1)Q^2 + 2E_2 k \cdot p_2 - 2E_1 k \cdot p_1}{E_1 E_2 Q^2 + (k \cdot p_1)(k \cdot p_2)} \right] + O(Z \alpha)^3$$
(spin zero, point nucleus). (4.9)

QCD Analysis of heavy quark asymmetries

B. von Harling, Y. Zhao, sjb

- Include Radiation Diagrams
- FSI similar to Sivers Effect

 $\pi Z \alpha \to \pi C_F \alpha_s$

Renormalization scale relatively soft

ECT*, **February 8**, 2013

AFTER

QCD Analysis of heavy quark asymmetries

B. von Harling, Y. Zhao, sjb

- Include Radiation Diagrams
- FSI similar to Sivers Effect

 $\pi Z \alpha \to \pi C_F \alpha_s$

Renormalization scale relatively soft

ECT*, **February 8**, 2013

AFTER

$$U(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (L + S - 1)$$

Semiclassical first approximation to QCD

Confining AdS/QCD potential

Light-Front Holography and Non-Perturbative QCD

Goal: Use AdS/QCD duality to construct a first approximation to QCD

Hadron Spectrum Líght-Front Wavefunctions, Running coupling in IR

in collaboration with Guy de Teramond

Direct Mapping of the 5th Dimension of AdS Space to Physical Space-Time at Fixed Light-Front Time

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} Light-Front Schrödinger Equation \\ \hline G. de Teramond, sjb \\ \hline Frame Independent! \\ \hline \end{array}$$

U is the exact QCD potential Conjecture: 'H'-diagrams generate U

Orbital and radial excitations for the π ($\kappa = 0.59$ GeV) and the ρ I=1meson families ($\kappa = 0.54$ GeV)

ECT*, **February 8**, 2013

AFTER

• J=L+S, I=1 meson families $\mathcal{M}^2_{n,L,S}=4\kappa^2\left(n+L+S/2 ight)$

 $4\kappa^2$ for $\Delta n = 1$ $4\kappa^2$ for $\Delta L = 1$ $2\kappa^2$ for $\Delta S = 1$

n=2 n=1 n=0 n=2 n=1 n=0 4 a₄(2040) ρ**(1700**) π₂(1880) M^2 (GeV²) M² (GeV²) π(1800) ρ₃(1690) π₂(1670) 2 2 p(1450) a₂(1320) π(1300) b₁(1235) π(140) ρ(770) 0 0 2 2 0 0 2-2012 8820A20 2-2012 8820A24

Same slope in n and L

I=1 orbital and radial excitations for the π ($\kappa = 0.59$ GeV) and the ρ -meson families ($\kappa = 0.54$ GeV)

• Triplet splitting for the I = 1, L = 1, J = 0, 1, 2, vector meson a-states

 $\mathcal{M}_{a_2(1320)} > \mathcal{M}_{a_1(1260)} > \mathcal{M}_{a_0(980)}$

Hadron Form Factors from AdS/CFT

Propagation of external perturbation suppressed inside AdS.

 $J(Q,z) = zQK_1(zQ)$

Consider a specific AdS mode $\Phi^{(n)}$ dual to an n partonic Fock state $|n\rangle$. At small z, Φ scales as $\Phi^{(n)} \sim z^{\Delta_n}$. Thus:

$$F(Q^2) \rightarrow \left[\frac{1}{Q^2}\right]^{\tau-1},$$

Dimensional Quark Counting Rules: General result from AdS/CFT and Conformal Invariance

where $\tau = \Delta_n - \sigma_n$, $\sigma_n = \sum_{i=1}^n \sigma_i$. The twist is equal to the number of partons, $\tau = n$.

Holographic Mapping of AdS Modes to QCD LFWFs

• Integrate Soper formula over angles:

$$F(q^2) = 2\pi \int_0^1 dx \, \frac{(1-x)}{x} \int \zeta d\zeta J_0\left(\zeta q \sqrt{\frac{1-x}{x}}\right) \tilde{\rho}(x,\zeta),$$

with $\widetilde{\rho}(x,\zeta)$ QCD effective transverse charge density.

• Transversality variable

$$\zeta = \sqrt{x(1-x)\vec{b}_{\perp}^2}$$

• Compare AdS and QCD expressions of FFs for arbitrary Q using identity:

$$\int_0^1 dx J_0\left(\zeta Q\sqrt{\frac{1-x}{x}}\right) = \zeta Q K_1(\zeta Q),$$

the solution for $J(Q,\zeta) = \zeta Q K_1(\zeta Q)$!

Current Matrix Elements in AdS Space (SW)

sjb and GdT Grigoryan and Radyushkin

• Propagation of external current inside AdS space described by the AdS wave equation

$$\left[z^2\partial_z^2 - z\left(1 + 2\kappa^2 z^2\right)\partial_z - Q^2 z^2\right]J_{\kappa}(Q, z) = 0.$$

• Solution bulk-to-boundary propagator

$$J_{\kappa}(Q,z) = \Gamma\left(1 + \frac{Q^2}{4\kappa^2}\right) U\left(\frac{Q^2}{4\kappa^2}, 0, \kappa^2 z^2\right),$$

where U(a, b, c) is the confluent hypergeometric function

$$\Gamma(a)U(a,b,z) = \int_0^\infty e^{-zt} t^{a-1} (1+t)^{b-a-1} dt.$$

- Form factor in presence of the dilaton background $\varphi = \kappa^2 z^2$

$$F(Q^2) = R^3 \int \frac{dz}{z^3} e^{-\kappa^2 z^2} \Phi(z) J_{\kappa}(Q, z) \Phi(z).$$

• For large $Q^2 \gg 4\kappa^2$

$$J_{\kappa}(Q,z) \to zQK_1(zQ) = J(Q,z),$$

the external current decouples from the dilaton field.

Soft Wall Model

Note: Analytical Form of Hadronic Form Factor for Arbitrary Twist

• Form factor for a string mode with scaling dimension $au, \Phi_{ au}$ in the SW model

$$F(Q^2) = \Gamma(\tau) \frac{\Gamma\left(1 + \frac{Q^2}{4\kappa^2}\right)}{\Gamma\left(\tau + \frac{Q^2}{4\kappa^2}\right)}.$$

- For $\tau = N$, $\Gamma(N+z) = (N-1+z)(N-2+z)\dots(1+z)\Gamma(1+z)$.
- Form factor expressed as N-1 product of poles

$$F(Q^{2}) = \frac{1}{1 + \frac{Q^{2}}{4\kappa^{2}}}, \quad N = 2,$$

$$F(Q^{2}) = \frac{2}{\left(1 + \frac{Q^{2}}{4\kappa^{2}}\right)\left(2 + \frac{Q^{2}}{4\kappa^{2}}\right)}, \quad N = 3,$$

...

$$F(Q^{2}) = \frac{(N-1)!}{\left(1 + \frac{Q^{2}}{4\kappa^{2}}\right)\left(2 + \frac{Q^{2}}{4\kappa^{2}}\right)\cdots\left(N - 1 + \frac{Q^{2}}{4\kappa^{2}}\right)}, \quad N.$$

• For large Q^2 :

$$F(Q^2) \rightarrow (N-1)! \left[\frac{4\kappa^2}{Q^2}\right]^{(N-1)}$$

ECT*, **February 8**, 2013

AFTER

Dressed soft-wall current brings in higher Fock states and more vector meson poles

ECT*, **February 8**, 2013

AFTER

Timelike Pion Form Factor from AdS/QCD and Light-Front Holography

Fixed-Target Physics with the LHC Beams

- 7 TeV proton beam, 3 TeV nuclear beams
- Full Range of Nuclear and Polarized Targets
- Cosmic Ray simulations
- Sterile Neutrinos -- Dark Matter Candidates
- Single-Spin Asymmetries, Transversity Studies, A_N
- High-x_F Dynamics --Correlations, Diffraction
- High-x_F Heavy Quark and quarkonium phenomena
- Production of ccq to ccc to bbb baryons
- Quark-Gluon Plasma in Nuclear Rest System: e.g. Ridge Physics at Extreme Rapidities
- Anti-Shadowing: Flavor Specific?
- Higgs at Threshold using nuclear Fermi motion

ECT*, February 8, 2013

AFTER

High x_F at AFTER

- Drell Yan at high x_F
- W, Z
- Structure Functions at High x
- Direct Processes
- Polarization Correlations
- Intrinsic Heavy Quark Studies
- Diffractive Channels
- Proton Diffraction to 3 Jets
- Quarkonium Dynamics
- Open Flavor, B and D

ECT*, February 8, 2013

AFTER

Novel Physics at AFTER,

- Secondary Beams: Pions Kaons, Muons, even B and D
- Pion Exchange: Effective Pion Collisions
- Deuteron Target: Hidden Color
- Spin-Correlations with Polarized Targets
- Huge single spin asymmetries at high xF
- pA to Quarkonium -- non-factorizing nuclear dependence
- Breakdown of Factorization: Double Boer-Mulders
- Photon plus Heavy Quark Anomalies
- Shadowing, Antishadowing
- Odderon Search

Fixed Target Physics with the LHC Beams

- Many Novel QCD Effects never thoroughly investigated
- "Lensing" Effects: Exceptions to Factorization Theorems
- Violation of Scaling Laws
- Dynamic versus Static Structure Functions
- Production of charm, bottom and exotics
- Novel Nuclear Dynamics
- Novel Diffractive Processes
- High Rapidity: Maximal Spin, Flavor Correlations
- High AFTER energy domain well-matched to QCD

AFTER

Nuclear Collisions with AFTER

- Nucleus-Nucleus and Proton-Nucleus Scattering in Lab Frame Look at Target Fragmentation Region x_F=-1
- What happens to Target Nucleus when QGP is formed?
- pp pA AA Ridge at extreme rapidity
- What are the critical parameters for the onset of QGP
- Light-Front Description: Frame-Independent
- Use Fool's ISR Frame -- No Lorentz Contraction of LFWF
- Energy Loss Studies, LPM, Non-Abelian
- Quarkonium Production, Polarization
- Open charm, bottom

ECT*, February 8, 2013

AFTER

- Anti-Shadowing is Universal
- **ISI and FSI are higher twist effects and universal**
- High transverse momentum hadrons arise only from jet fragmentation -- baryon anomaly!
- **heavy quarks only from gluon splitting**
- renormalization scale cannot be fixed
- QCD condensates are vacuum effects
- Infrared Slavery
- Nuclei are composites of nucleons only
- **Real part of DVCS arbitrary**

ECT*, **February 8**, 2013

•

AFTER

Physics Flagships for AFTER: Fixed Target Experiments @ the LHC

Heavy Quark Physics

Stan Brodsky

AFTER @ LHC

ECT* Workshop

February 4-8, 2013

European Center for Theoretical Studies in Nuclear Physics and Related Areas

Thanks to the France-Stanford Center for Interdisciplinary Studies

Thanks to: J.-P. Lansberg, F. Fleuret

