Étude préparatoire à l'appariement électromagnétique des photons ME/PS à travers le canal $Z \rightarrow \mu^+ + \mu^- + \gamma$

C. Bâty S. Gascon M. Lethuillier

(IPNL, Université Lyon 1, Université de Lyon)

J. Tao

IHEP (Beijing) M. Moretti F. Piccinini R. Pittau (Univ. Ferrara/INFN, Univ. Pavia/INFN, Univ. Torino/INFN & Univ. Grenada)

> Institut de Physique Nucléaire de Lyon Université Claude Bernard Lyon 1 Université de Lyon

> > 29 Avril 2008

Plan de la présentation

Conclusions et Perspectives

Présentation de l'étude Un aperçu global

De nos jours, la génération de processus physiques impliquent de plus en plus :

- ME la génération d'un « évènement dur » avec un générateur à élément de matrice (ALPGEN(1), MadGraph(3)...)
- PS la fragmentation et l'hadronisation à l'aide d'un algorithme de gerbe partonique (PYTHIA(2), Herwig ...)
- Le problème de double comptage entre les jets traités par les générateurs ME & PS est géré par des sélections d'« appariement QCD » faites au niveau « particule » (apres création de la gerbe partonique)).
- 3 Le problème du double comptage des photons lors de l'application de générateurs successifs, n'as pas encore été implémenté, → « même technique » pour les photons que pour les jets.

But : Sélectionner les photons des générateurs de type ME ou PS dans l'espace de phase cinématique où ils sont les plus pertinents tout en évitant le double comptage.

Notre canal d'essai : $Z \rightarrow \mu \mu + \gamma$, son intérêt au LHC :

Lyon 1 UNIVERSITE DE LYON

Utilisation des « *bremstrahhlungs internes* » pour permettre de faire les mesures suivantes à partir des données réelles :

- Efficacité des processus de déclenchement sur les photons
- Détermination de l'échelle d'énergie des photons
- Détermination de l'efficacité d'identification des photons
- Détermination des corrections en énergies pour les photons
- Intervalle pertinent pour E_t: 5 200 GeV (calibration en énergie d'ECAL entre l'énergie des π₀ et celle des γ du boson de Higgs).

Présentation de l'étude Plus de détails sur notre étude

Nous étudions la simulation du canal à travers deux procedés différents de génération :

Le premier procedé utilise dans un premier temps le générateur ALPGEN dans le canal inclusif Z → µµ et ensuite le générateur PYTHIA pour permettre une gerbe partonique. L'échantillon obtenu par ce processus sera appelé Z₀ car il s'agit de la désintégration d'un Z qui ne comporte pas explicitement de γ dans l'évenement dur.

Présentation de l'étude Plus de détails sur notre étude

Nous étudions la simulation du canal à travers deux procedés différents de génération :

- Le premier procedé utilise dans un premier temps le générateur ALPGEN dans le canal inclusif Z → µµ et ensuite le générateur PYTHIA pour permettre une gerbe partonique. L'échantillon obtenu par ce processus sera appelé Z₀ car il s'agit de la désintégration d'un Z qui ne comporte pas explicitement de γ dans l'évenement dur.
- L'autre procedé utilise ALPGEN pour générer explicitement le processus $Z \rightarrow \mu \mu + \gamma$ (ISR/FSR éteint lors du passage ultérieur dans PYTHIA). Cet échantillon sera appelé Z_1 car le générateur ALPGEN force la création d'un γ par élément de matrice.

Présentation de l'étude Plus de détails sur notre étude

Nous étudions la simulation du canal à travers deux procedés différents de génération :

- Le premier procedé utilise dans un premier temps le générateur ALPGEN dans le canal inclusif Z → µµ et ensuite le générateur PYTHIA pour permettre une gerbe partonique. L'échantillon obtenu par ce processus sera appelé Z₀ car il s'agit de la désintégration d'un Z qui ne comporte pas explicitement de γ dans l'évenement dur.
- L'autre procedé utilise ALPGEN pour générer explicitement le processus $Z \rightarrow \mu \mu + \gamma$ (ISR/FSR éteint lors du passage ultérieur dans PYTHIA). Cet échantillon sera appelé Z_1 car le générateur **ALPGEN** force la création d'un γ par élément de matrice.

Dans les deux procédés, donc, nous utiliserons PYTHIA et ALPGEN mais en forçant la création d'un photon (ou pas) par générateur à élément de matrice. L'évenement sous jacent et l'hadronisation sont supprimés afin de se limiter à l'observation déconvoluée des photons ME et PS.

But de cette étude

- Déterminer l'espace de phase des observables où les descriptions ME/PS diffèrent : $\Delta_R(\gamma, \mu)$ et γ_{PT}
- Déterminer les zones d'accord entre les descriptions PS/ME afin de définir une région où un « cutoff » pourra être choisi
- Vérifier si ces intervalles sont robustes sous le procéde de véto « anti-double-comptage » qui va

être décrit en étudiant la stabilité de :

- \rightarrow La section efficace totale en utilisant : $\sigma_f = \sigma_i \times \frac{N_{final}}{N_{generated}}$
- → Les allures des courbes combinées (Z0 + Z1) après l'application du veto, afin de vérifier leurs insensibilités aux coupures.
- Si tout cela est correct, sélectionner un « cutoff » au niveau générateur aussi élevé que possible pour améliorer l'efficacité de génération.

Présentation de l'étude Paramètres des échantillons

Échantillons de références

Générés pour chacun des deux procédés de génération (Z0 & Z1) avec les coupures lâches suivantes :

PT_{μ}	> 15GeV	PT_{γ}	> 1GeV
η	< 3.0	η_{γ}	< 3.0 (pour Z1 seulement)
$\Delta_R(\mu\gamma)$	> 0.05	$M_{\mu\mu}$	$20 \text{GeV} < M_{\mu\mu} < 150 \text{GeV}$

Par ailleurs nous utilisons les paramètres suivants :

Lyon 1 UNIVERSITE DE LYON

- Le « Parton Shower » est effectué avec PYTHIA 6.408
- Dans chaque évenement on n'affiche que le γ de plus haut PT ayant $\Delta_R > 0.05 \& PT_{\mu\mu} > 1 GeV \& |\eta < 3.0|$
- Les deux échantillons sont normalisés à l'unité.

Paramètres de génération

Pourcentages d'évenements résistants à ces coupures

 $Z \rightarrow \mu \mu$ Z0 : $\simeq 52K/500K \simeq 11\%$ avec γ provenant de PYTHIA PS

 $Z \rightarrow \mu \mu + \gamma$ Z1 : $\simeq 50 K/52 K \simeq 96\%$ avec γ provenant de Alpgen ME

Conclusions et Perspectives

Résultats de l'étude Premiers résultats : zone de stabilité et choix des points de tests de la robustesse

 Δ_R : 0.15 < $\Delta_R(\gamma_{closest}, \mu)$ < 1.8 γ_{PT} : 1 < γ_{PT} < 16 GeV

Résultats de l'étude Vérification de la validité de notre canal dans Alpgen

Résultats de l'étude

Véto anti-double-comptage et stratégie pour les tests de robustesse

Procédé de veto utilisé (préconisé par l'équipe ALPGEN) :

- Z_0 conservation uniquement des évènements n'ayant aucun γ avec $\Delta_R > \Delta_R$ Cut et $\gamma_{PT} > \gamma_{PT}$ Cut et $\eta_{\gamma} > \eta_{\gamma}$ Cut
- Z₁ conservation uniquement des évènements ayant au moins un γ avec $\Delta_P > \Delta_P$ Cut et $\gamma_{PT} > \gamma_{PT}$ Cut et $\eta_{\gamma} > \eta_{\gamma}$ Cut

Nous regardons ensuite la section efficace totale et la forme de la distribution combinée (Z0 + Z1) pour les variables Δ_P et γ_{PT} pour les évenements survivant au véto

Choix de 4 points de coupures dans l'espace de
phases (Δ_{P}, γ_{PT}). Générations des 4 échantillons Z1

dédiés. On applique le procédé de véto sur les échantillons Z0 et Z1 correspondant.

VOD 1 UNIVERSITE DE LYON

los tosts do ro

Stratégie pour

Échantillon	Δ_R Cut	γ_{PT} Cut	η_{γ} Cut
Point A	0.35	3 GeV	2.7
Point B	0.35	14 GeV	2.7
Point C	1.00	3 GeV	2.7
Point D	1.00	14 GeV	2.7

Les valeurs limitantes lors de la aeneration sont choisies plus lâches que celles au niveau des « coupures » afin de s'affranchir des biais de bord (valable pour 71 seulement).

Résultats de l'étude Résultats obtenus après les coupures : sections efficaces

Point	Z ₀	Zı
A	3.832 %	28.2 %
В	1.214 %	29.5 %
С	2.067 %	37.1%
D	0.684 %	36.0 %

Évènements comptés deux fois

Point	$\sigma_{Tot} = \sigma_{ZO_f} + \sigma_{ZI_f}$
A	$983.094 \pm 0.542 { m fb}$
В	$985.746 \pm 0.517~{ m fb}$
С	$986.326 \pm 0.526 { m fb}$
D	988.213 ± 0.514 fb

Tableau des sections efficaces TOTALES selon les points d'études

Remarque : conservation de la section efficace

On voit que les sections efficaces finales restent compatibles ($\approx 5^{\,0}/_{00}$) malgrés une légère augmentation selon les points d'études.

Point	σ ₇₀ .	σ_{70} , (veto only)
	20	207
A	991.402 ± 0.514 fb	953.411 ± 0.494 fb
В	991.402 ± 0.514 fb	979.365 ± 0.508 fb
С	$991.402 \pm 0.514 \text{fb}$	970.905 ± 0.503 fb
D	$991.402 \pm 0.514 {\rm fb}$	984.619 \pm 0.510 fb

Tableau des sections efficaces selon les échantillons ZO

Point	σ_{Z1_i}	σ_{Z1_f}
A	41.34 ± 0.067 fb	29.683 ± 0.048 fb
В	9.056 ± 0.013 fb	6.381 ± 0.009 fb
С	24.51 ± 0.037 fb	15.421 ± 0.023 fb
D	5.619 ± 0.006 fb	3.594 ± 0.004 fb

Tableau des sections efficaces selon les échantillons Z1

 $\sigma_{Z0_i/Z1_i}$ = section efficace de génération Z0 / Z1,

$$\sigma_{ZO_f/ZI_f} = \sigma_{ZO_i/ZI_i} \times \frac{N_{total} - N_{veto}}{N_{total}},$$

Pour Z1, le haut pourcentage de coupures provient de la différence entre le niveau « généré » et « matché » (c'est à dire le niveau où l'on applique les coupures de sélection).

IV/VIII

Résultats de l'étude Indépendance des variables étudiées

Échantillon ZO Point A

Échantillon Z1 Point A

Échantillon Z1 Point D

V/VIII

Étude Résultats Conclusion

Résultats de l'étude Formes des courbes pour les variables ypr selon 20 et 21

VI/VIII

13 / 22

Étude Résultats Conclusion

Résultats de l'étude Formes des courbes pour les variables Δ_R selon Z0 et Z1

Clément Bâty

VII/VIII

Résultats de l'étude Tests de la robustesse : formes des courbes pour $\gamma_{PT} \& \Delta_R$

Formes des courbes $\gamma_{PT} \& \Delta_R$

• les courbes pour chaque point d'étude sont très similaires (notamment pour Δ_R) \rightarrow le véto peut se baser sur la seule variable γ_{PT} .

• dans la zone de stabilité de γ_{PI} , on observe une meilleure corrélation entre les échantillons $A \rightarrow D$ entre eux qu'entre un de ces échantillon et le REF.

Remarque : La courbe REF utilisée ici contient uniquement des photons provenant de PYTHIA PS seul avant application d'un véto.

 \vee III/ \vee III

Conclusions

Aujourd'hui nous avons pratiquement fini cette étude car les étapes suivantes ont été effectuées :

- Déterminer l'espace de phase des observables où les descriptions ME/PS diffèrent.
- Déterminer la zone de validité où l'on peut choisir le « cutoff ».
- Vérifier si la zone sélectionnée est robuste.
- Décider de la coupure finale à mettre pour maximiser l'efficacité de génération

Conclusions

Aujourd'hui nous avons pratiquement fini cette étude car les étapes suivantes ont été effectuées :

- 1) Déterminer l'espace de phase des observables où les descriptions ME/PS diffèrent. Δ_R et γ_{PT} OK
 - Déterminer la zone de validité où l'on peut choisir le « cutoff ». OK
 - Vérifier si la zone sélectionnée est robuste. OK
 - Décider de la coupure finale à mettre pour maximiser l'efficacité de génération Imminent

Conclusions :

- Investigation de la différence de caractère inattendue dans la distribution de la pt du photon selon le type de générateur utilisé (PS vs ME) (Cross-Check avec MadGraph en accord avec ALPGEN)
- Ordre de grandeur du double-comptage : 0.7 4% des évenements dans la zone d'accord. Besoin du véto pour aboutir à un double-comptage inférieur à 0.5% dans les zones proches de l'extérieur de la zone d'accord.
- Stabilité de la section efficace après véto : section efficace stable à l'intérieur de ≈ 5⁰/₀₀ avec une légère tendance à augmenter.
- Stabilité de la forme après véto (Δ_R): la quasi absence de différence pour la variable Δ_R conduit à une utilisation possible, du seul γ_{PT} pour le véto.
- Stabilité de la forme après véto (γ_{PT}): les spectres pour chaque point d'étude sont compatibles (limites des erreurs statistiques). Il existe toutefois une difference marquée entre le spectre des photons PS seuls avant véto et ceux des points d'études.

Perspectives

- Extension à d'autres ordres de photons explicites : $Z + 2\gamma$, $Z + 3\gamma$,...
- Extension à d'autres canaux potentiellement affectés par le double comptage : $m\gamma + njets$, $W + n\gamma + mjets$,...
- Mise en œuvre dans ALPGEN de l'appariement EM PS/ME (en discussion avec les auteurs d'ALPGEN)

Remerciement : Nous voudrions remercier toute l'équipe d'**ALPGEN** qui nous as notamment inclus le canal $Z + \gamma$ (version privée 2.11)et nous prévoit l'inclusion PS/ME dans une future version d'ALPGEN.

Fin de la présentation ...

Backup slides

Présentation de l'étude Les outils de générations dans les études Z & Z

- **PYTHIA** : générateur d'évènement utilisé actuellement pour l'hadronisation et la simulation de la fragmentation.
- ALPGEN : un générateur au niveau élément de matrice, utilisé pour simuler des évènements complexes au premier ordre (LO) (particulièrement dans les canaux multi-partons durs)

Nous essayons de trouver leurs régions de validités en sachant que **PYTHIA** est pensé être plus performant à bas *PT* et Δ_R et que **ALPGEN** à des problèmes pour simuler les évènements à très faible *PT*.

Dans cette étude nous avons effectués les choix suivants :

- nous avons décidé de ne simuler ni l'hadronisation ni la fragmentation pour les deux études (Z₀ & Z₁),
- nous avons décidé de ne pas autoriser les ISR & FSR dans les évènements Z₁.

Détails sur l'étude Résultats intermédiaires

Échantillon	σ_{ZO_i}	σ_{Z0_i} (veto only)	σ_{ZO_f}
Point A	991.402 ± 0.514 fb	953.411 ± 0.494 fb	$562.666 \pm 0.292 \text{ fb}$
Point B	991.402 ± 0.514 fb	$979.365 \pm 0.508 \text{ fb}$	$588.620 \pm 0.305 \text{ fb}$
Point C	991.402 ± 0.514 fb	$970.905 \pm 0.503 \text{ fb}$	$580.160 \pm 0.301 \text{ fb}$
Point D	991.402 ± 0.514 fb	984.619 ± 0.510 fb	$593.874 \pm 0.308 \text{ fb}$

Tableau des sections efficaces selon les Échantillons ZO

Échantillon	Z	Zl
Point A	3.832 %	28.2 %
Point B	1.214 %	29.5 %
Point C	2.067 %	37.1 %
Point D	0.684 %	36.0 %

Pourcentages des évènements comptés deux fois selon les points d'études

Échantillon	σ_{Z1_i}	σ _{Zlf}
Point A	41.34 ± 0.067 fb	29.683 ± 0.048 fb
Point B	9.056 ± 0.013 fb	6.381 ± 0.009 fb
Point C	24.51 ± 0.037 fb	15.421 ± 0.023 fb
Point D	5.619 ± 0.006 fb	3.594 ± 0.004 fb
Point REF	97.43 ± 0.210 fb	89.878 ± 0.202 fb

Tableau des sections efficaces selon les échantillons Z1

The Δ_R cut to be free of double-counting is significantly higher than that used in our study \rightarrow Cannot live

w/o matching

Bibliographie

L. Michaelangelo, L. Mangano, M. Moretti, R. Pittau, A. Polosa *ALPGEN TEAM*.

JHEP 0307 :001, 2003 ALPGEN, a generator for hard multiparton processes in hadronic collisions

http://mlm.home.cern.ch/mlm/alpgen

T. Sjöstrand, S. Mrenna, P. Skands *THE PYTHIA TEAM.* JHEP 05 :026, 2006 PYTHIA 6.4 physics and manual http://project.hepforge.org/pythia6

J. Alwall, P. Demin, S. de Vissher, R. Frederix, M. Herquet, F. Maltoni, T. Stelzer MadGraph TEAM. JHEP 0709 :028,2007 MadGraph, MadEvent v4 : The New Web Generation http://madgraph.hep.uiuc.edu/index.html

