Moduli stabilization in (string) model building: gauge fluxes and loops

Michele Trapletti

LPT - Université Paris-Sud 11, CPHT - École Polytechnique

Based on

hep-th/0605232 (with Felix Brümmer and Arthur Hebecker) hep-th/0611102 (with Andreas Braun and Arthur Hebecker)

Introduction: the string-pheno paradigma

- Low energy string theory: d=10, *N*=I/II SUGRA.
- Necessary a compatification on a 6d space K, such that SUSY is reduced to *N*=1 in 4d.

The choice of K: I - Topological properties \rightarrow "topological" properties of the 4d model; II - Metric properties (Size & Shape) → "parameters" of the 4d model. **Point:** I - Size & Shape are vev's of dynamical fields; II - Flat potential at tree-level. Which control on the phenomenology of the model?

A minimal option: the KKLT proposal:

I - Introduce fluxes for the closed string p-forms
 → Stabilization of shape (complex structure) moduli.

Giddings, Kachru, Polchinski '01

 II - Introduce non-perturbative corrections (gaug. cond.)
 → Stabilization of the volume (Kaehler) moduli; Kachru, Kallosh, Linde, Trivedi '03

"minimal" option: there is a single Kaehler modulus.

The minimal option is very specific: extend to more Kaehler's, introduce new effects Include the effect of

- gauge (open string) fluxes → D-term stabilization;
- <u>loop corrections</u> Kaehler corrections;
- α' corrections;

Study of the effects due to gauge fluxes and loop corrections in a 6d toy model, extract the model independent features

- I Brief review of the KKLT proposal:
- II 6d SUGRA as a playground to "test" extensions of KKLT (two Kaehler moduli)
 - 6d SUGRA + SYM compactified on T^2/Z_2 ;
 - Scherk-Schwarz mechanism as a source of *W*⁰;
 - The presence of gauge fluxes: D-term potential;
 - Loop corrections;
 - Discussion (the stabilization).

The KKLT proposal: basic issues

Kachru, Kallosh, Linde, Trivedi '03

- Take a compactification of Type IIB string on a CY with a single Kähler modulus *S*.
- Include closed string fluxes
 → stabilization of complex structure moduli, that can be integrated out. A constant superpotential term W₀.
- Include non-perturbative effects (gaugino condensation) $W = W_0 + e^{-S}, K = -\log(S + \overline{S})$

→ stabilization of *S* at a SUSY AdS minimum, with S > 1, $V_{Min} \sim -|W_0|^2$.

Include a SUSY breaking mechanism
 SUSY breaking and "uplifting" of the minimum.

6d SUGRA

- The bosonic 6d action is $(-g_6)^{-\frac{1}{2}}\mathcal{L} = -\frac{1}{2}\mathcal{R} - \frac{1}{2}\partial_M\phi\partial^M\phi - \frac{1}{24}e^{2\phi}H_{MNP}H^{MNP} - \frac{1}{4}e^{\phi}F_{MN}F^{MN}$ with

 $H_{MNP} = \partial_M B_{NP} + F_{MN} A_P + \text{cyclic perm.} = (dB + F \land A)_{MNP}$ and is invariant under the gauge transformations $\delta A = d\Lambda, \quad \delta B = -\Lambda F + dC$

where Λ is a scalar and parametrizes the "*F*" gauge symmetry and *C* is a 1-form and parametrizes the "*B*" gauge symmetry.

This action can be seen as the outcome of a K3 compactification of string theory, in case the internal moduli fields are neglected.

Compactification to 4d: effective SUGRA

- We can consider a compactification on an internal T^2/Z_2 . $(g_6)_{MN} = \begin{pmatrix} r^{-2}(g_4)_{\mu\nu} & 0\\ 0 & r^2(g_2)_{mn} \end{pmatrix}, \quad (g_2)_{mn} = \frac{1}{\tau_2} \begin{pmatrix} 1 & \tau_1\\ \tau_1 & |\tau|^2 \end{pmatrix}$

the dimensional reduction produces the following fields

- 4d metric g_4 + internal metric components r, τ_1, τ_2 ;
- 4d *B* field, i.e. one scalar c + internal $B_{56} = b$;
- 4d gauge field *F*;
- dilaton.
- *g*⁴ and *F* fill the standard 4d SUGRA/SYM action;
- the scalars are organised in 3 chiral multiplets, *S*, *T*, τ , with Kähler potential

 $K = -\log(S + \bar{S}) - \log(T + \bar{T}) - \log(\tau + \bar{\tau})$

- the gauge kinetic function is 2*S*.

Scherk-Schwarz mechanism: a source for *W*⁰

- R-Symmetry in 6d SUGRA

Let 6d SUGRA be defined as a compactification of 10d SUGRA

- T⁴ compactification: the 10d Lorentz group is broken as $SO(1,9) \rightarrow SO(1,6) \ge SO(4)_R$.
- K3 compactification:
 - consider K3 ~ T^4/Z_n for simplicity
 - let $SO(4)_R = SU(2)_{R1} \times SU(2)_{R2}$
 - take Z_n in $SU(2)_{R1} \longrightarrow SU(2)_{R1}$ is broken but $SU(2)_{R2}$

remains as an active R-symmetry!

- SS compactification of 6d SUGRA Consider a generic bulk field Φ and define $\Phi(x^5 + 2\pi, x^6) = T_5 \Phi(x^5, x^6), \ \Phi(x^5, x^6 + 2\pi) = T_6 \Phi(x^5, x^6)$ with T_5 and T_6 being $SU(2)_R$ operators. In case one of the matrices is non-trivial \longrightarrow SS compactification Dudas, Grojean '97; Barbieri, Hall, Nomura ...;

- Consistency conditions: T^2 compactification

 T_i is the embedding in $SU(2)_R$ of the translation t_i along x^i . Since $t_5 t_6 = t_6 t_5$ we need $T_5 T_6 = T_6 T_5$.

- Consistency conditions: T^2/Z_N compactification

In case of an orbifold, also the orbifold rotation *r* is embedded into the R-symmetry group, via a matrix *R*. Such a matrix is *fixed* (up to discrete choice) by the requirement of having SUSY in the 4d model, and is *non-trivial*.

Again, the commutation relations of t_5 , t_6 , and r define commutation relations for T_5 , T_6 , and R. These are non-trivial, since R is non-trivial.

In case a solution exists with T_5 and / or T_6 non-trivial

→ SS compactification If then the non-trivial T's can be chosen in a "continuos" way, linked to the identity, then the breaking is described by a constant superpotential term $W_{0.}$

Such is the case in T^2/Z_2 compactifications ... Lee '05 ... and only in this case in the 2d case.

Gauge background: D-term potential

- We can consider a constant background $F_{56} = f$.
- The fields A^5 , A^6 are not globally defined: $A(z+\pi)=A(z)+d\Lambda_0$
- Thus also B_{56} is not globally defined: since $H = dB + F \wedge A$ and H is gauge invariant, it follows $B(z+\pi)=B(z) - \Lambda_0 F$, thus both A and B have a non-trivial profile in the internal space.
- In order to single out the zero modes of *A* and *B* we
 a) define A = (A) + A, splitting the background field, not globally defined, from the "quantum fluctuations", globally defined and with standard constant zero-mode (standard KK massless state);
 b) redefine the field B as B = B + (A) A A so that
 - b) redefine the field *B* as $B = \mathcal{B} + \langle A \rangle \land \mathcal{A}$ so that the new field \mathcal{B} is also globally defined with

Kaloper, Myers '99; Villadoro PhD Thesis '06

- Given the redefinition:

 $\delta \mathcal{B}_{56} = -2\Lambda f$

- \rightarrow *B* transforms (as expected)
- → the gauge transformation is the double of what one would naively expect from $H = dB + F \land A$
- The "new" SUGRA is exactly the old one, provided that one redefines the field $b = B_{56}$ as $b = \mathcal{B}_{56}$. In this way the field *T*, whose imaginary part is *b*, transforms under the gauge transformation.
- Given such a transformation we can infer the D-term potential $D = i K_I X^I$, where X^I is the Killing vector, in the present case being $X^T = -i f$.
- Thus we have D = f/t, and $V_D = \frac{f^2}{2ct^2}$.
- We can compute the potential also directly from the *F*² term in the lagrangian, the two results coincide.

D-term + W₀ + gaugino condensation : a clash?

- Take the KKLT model single modulus *S* - superpotential $W = W_0 + e^{-S}$
- Can we use a D-term potential to break SUSY and uplift the AdS minimum? No, for two reasons:
- I The D-term is associated with a gauge transformation involving one modulus. If there is only *S* then it must transform, but this is incompatible with $W = W_0 + e^{-S}$. Choi et al.; Dudas, Vempati; Villadoro, Zwirner
- Present case: no clash! The field transforming is *T*, and the field entering the gaugino condensation term is *S*. see also Haack et al. '06 for a realization with D7-branes (other way out: $A(M) e^{-S}$ Achucarro et al; Dudas et al; Haack et al...)
- **II** D-terms and F-terms are related, and it is impossible to uplift a SUSY minimum (F = 0) via a D-term.
- Present case: no clash! The minimum with non-zero D-term is non-SUSY: F_T is not zero! (but no uplift ...)

Model independent features

I - The outcome

existence of 2 moduli, one governing the gaugino condensation, the other governing the D-term potential (S: coupling, T: volume) is generic in KKLT model building (D7-branes)

II - The need for extra stabilization mechanisms (other than gaugino condensation) is generic:

Given T the volume of a cycle wrapped by a D7-brane where the SM is located, generically

$$W_{non pert.} \sim \prod_{i} \Phi^{i}_{SM} e^{-T}$$

→ T cannot be stabilized by perturbative effects Blumenhagen, Moster, Plauschinn '07

Haack et al '06

Loop corrections

- We can introduce in the system bulk fields (hypers) charged under the U(1) gauge group.
- These fields have a standard KK reduction in absence of a gauge background.
- In the presence of a gauge background the KK reduction is deeply modified: Bachas '95

$$m_n^2 = \frac{2|f|}{r^4} \left(n + \frac{1}{2} \right) \quad \text{for bosons,}$$
$$m_n^2 = \frac{2|f|}{r^4} \left(n + \frac{1}{2} \pm \frac{1}{2} \right) \quad \text{for fermions,}$$

and the degeneracy can be deduced via the Dirac index: $d_n = f/(2\pi) = N$

- From the 4d spectrum the 1-loop potential follows

$$V_{loop} = \frac{\alpha |f|^3}{(2\pi)^3 (st)^2}$$

Loop corrections as Kaehler corrections

- The effect of the loop corrections can be rephrased in SUGRA language → Kaehler corrections

$$\Delta K \sim \frac{1}{S+\bar{S}} \log(T+\bar{T})$$

- These corrections are generically present in string compactifications Hebecker, von Gersdorff '05; Berg, Haack, Koers '05. and may have a role in moduli stabilization
 - (not really in the present situation).

The complete potential: stabilization

Potential: function of s=Re[S], t=Re[T], c=Im[S], τ . I - W = W₀ + e^{-s} (from SS twist and gaugino condensation) $\rightarrow V_{gaugino} = \frac{1}{st} ((s^2 + 2s)e^{-s} - 2|W_0|se^{-s/2}) = \frac{V_{KKLT}}{t}$

II - D-term potential $\rightarrow V_D = \frac{f^2}{2st^2}$ III - Loop corrections $\rightarrow V_{loop} = \frac{\alpha |f|^3}{(2\pi)^3 (st)^2}$

Parametric study of the stabilization:

I - V_{KKLT} stabilizes s (W_0 vs gaugino cond.), $s_m \sim O(2 \log[1/W_0]) \longrightarrow s_m \sim O(10)$ for $W_0 \sim 10^{-2}$

II - $V(s_m,t) = -O(W_0^2/s_m) t^{-1} + O(10^2/s_m) t^{-2} + O(1/s_m^2) t^{-2}$

Stabilization of *t* via the D-term potential, *t_m* ~ 100 W₀⁻² → *t_m* ~ O(10⁶) for W₀ ~ 10⁻²
Perturbative corrections irrelevant (s-suppressed)

The minimum: $W_0 \sim 10^{-2}$

Conclusions

- We have shown the role of gauge fluxes/D-terms in the stabilization of a 6d SUGRA model, that can be seen as a non-trivial extension of the KKLT model.
 - No clash D-term vs $W = W_0 + e^{-S}$: extra modulus!
 - D-term crucial in the stabilization the extra modulus.
 - No uplifting via the D-term.
- Computed the 1-loop corrections to the potential, and re-cast them as corrections to the Khäler potential.
 - No de-stabilization of the minimum.
 - No uplifting.
- "By-product": we considered SS compactification in 2d as a source for W_0
 - Possible for T^2 or T^2/Z_2 compactifications;
 - Not possible for T^2/Z_N compactifications.

Outlook

- Pure 6d perspective: stabilization of the complex structure modulus;
- Stabilization in the presence of partial D-term cancellation:
 - the role of "matter moduli";
 - the role of more general Kaehler corrections (no S-suppression);
- A complete realistic model!