April 29 2008

Inclusive Search for mSUGRA events using MET + hadronic jets + di- τ 's signature with the CMS detector

HOUCHU Ludovic, GOERLACH Ulrich (IPHC, Strasbourg)

 Observing SUSY by the appearance of an excess of tau cand. pairs as a function of a kinematical variable ; 2 methods are described. • Motivation for this type of signature:

- 2 test points considered in mSUGRA parameter space:
- "<u>Low Mass 2</u>" ($m_{1/2}$ =350GeV/c², m_0 =185GeV/c², A_0 =0, tan β =35, sign(μ)=+), BR($\tilde{\chi}_2^0 \rightarrow \tilde{\tau} \tau$) ≈ 0.96, 24.6% of the mSUGRA events contain at least 1 above cascade,
- "<u>Low Mass 1</u>" ($m_{1/2}$ =250GeV/c², m_0 =60GeV/c², A_0 =0, tan β =10, sign(μ)=+), BR($\tilde{\chi}_2^0 \rightarrow \tilde{\tau} \tau$) ≈ 0.46, 15.0% of the mSUGRA events contain at least 1 above cascade.
- A previous study of these events by D. J. Mangeol and U. Goerlach in CMS NOTE 2006/096

Events considered (simul'ed with OSCAR and reco'ed with ORCA)

physics process		expected LO σ (pb)	# events	normalization factor
(+3.5 OR 5 on average pile-up events per bunch crossing)			used	for ∫Ldt =10fb ⁻¹
mSUGRA	all containing \widetilde{q} cascade	7.38	74K	1.00
<i>LM2</i>		1.82	18K	1.00
mSUGRA	all containing \widetilde{q} cascade	49.00	110K	4.43
<i>LM1</i>		6.77	15K	4.43
QCD small samples → high event weights	$\begin{array}{c} 80 \text{GeV/c} < p_T < 120 \text{GeV/c} \\ 120 \text{GeV/c} < p_T < 170 \text{GeV/c} \\ 170 \text{GeV/c} < p_T < 230 \text{GeV/c} \\ 230 \text{GeV/c} < p_T < 300 \text{GeV/c} \\ 300 \text{GeV/c} < p_T < 380 \text{GeV/c} \\ 380 \text{GeV/c} < p_T < 470 \text{GeV/c} \\ 470 \text{GeV/c} < p_T < 600 \text{GeV/c} \\ 600 \text{GeV/c} < p_T < 800 \text{GeV/c} \\ 800 \text{GeV/c} < p_T < 1000 \text{GeV/c} \\ \end{array}$	$\begin{array}{c} 2.96 \ 10^{6} \\ 497.50 \ 10^{3} \\ 100.20 \ 10^{3} \\ 23.80 \ 10^{3} \\ 6.39 \ 10^{3} \\ 1.89 \ 10^{3} \\ 690.00 \\ 202.00 \\ 35.70 \end{array}$	111K 93K 213K 242K 171K 142K 140K 60K 64K	265.89 10 ³ 53.46 10 ³ 4.70 10 ³ 983.82 374.53 133.48 49.17 33.79 5.55
<i>ttbar</i> incl.		492.00	581K	8.46
single <i>t</i> incl.		259.00	78K	33.29
W+jet(s)	75GeV/c < p_T < 125GeV/c	945.00	55K	170.79
	125GeV/c < p_T < 200GeV/c	215.00	78K	27.44
	200GeV/c < p_T < 350GeV/c	43.80	80K	5.44
	350GeV/c < p_T < 2200GeV/c	4.90	110K	0.44
WW+jet(s)		188.00	235K	7.99
Z+jet(s)	75GeV/c < p_T < 125GeV/c	125.00	53K	23.42
	125GeV/c < p_T < 200GeV/c	27.00	82K	3.29
	200GeV/c < p_T < 350GeV/c	5.40	52K	1.04 3
	350GeV/c < p_T < 2200GeV/c	0.70	52K	0.13

Tau reco + id

- •hadr. τ -jet particularities which are used to distinguish tau-jet from a q/g-jet :
 - narrowness,
 - low # charged particles,
 - low # neutral clusters visible in ECAL,
 - low proportion of neutral E relative to tracks ,
 - non-negligible τ flight path.

developed

•hadr. τ -jet / q/g-jet discrimination developed within ORCA (used here) and modified slightly within CMSSW :

- track isolation
- $\gamma \pi^0$ reconstruction inside jet,
- use the resulting $\gamma \pi^0$ candidates in a likelihood ratio. \int these 2 items

Tau reco + id

- jet reco. + tracker sel.
 - + -no neutral ECAL activity- sel
 - / LR sel if -neutral ECAL activity-
 - \rightarrow discriminator > 0.8
- + -not e/µ- tagged (based on E_{elm}, E_{had}, p_{T,track}

around 40% tau-jet tagging efficiency and few ‰ QCD-jet mis-tagging. efficiency

SM / mSUGRA LM2 discrimination

•Trigger pre-selection (ORCA) :

 $\int L dt = 10 fb^{-1}$

-L1 #28 bit (1 central jet with ET > 88 GeV + ETmiss > 46 GeV)

-.AND. HLT #125 bit (1 single jet with ET > 180 GeV)

600

 $*E_T^{2nd q/g-jet cand.} = E_T of the 2^{nd} highest E_T calo. jet "not lepton" tagged$

6

10²

10

1

100 200 300 400 500 600 700 800 900 100

Method A: looking for SUSY as function of the event density

<u>Kinematical variable</u> considered :

-*log*(X) where X is defined through the following scheme : •a 2D (E_T^{2nd q/g-jet cand.}, E_T^{miss}) histogram would 10⁸ be filled with a sample of real events, N+ie 10^{7} and then would be normalized to 1; 10⁶ 10⁵ 10^{4} 10^{3} for each event with variables ($E_{\tau}^{2nd q/g-jet cand.}$, E_{τ}^{miss}), 10² the content of the corresponding bin in the histo. , $X_{r,10}$ would then describe approximately the density of events in its neighbourhood ; 20 2 5 10 15 0 $-log(X_{SM+mSUGRA LM2})$

In the following slides two different event samples are studied :

- SM processes*,
- SM +mSUGRA LM2 processes*.

* weighted following the expected cross-section of the process

Method A: looking for SUSY as function of the event density

Method A for observing mSUGRA events in data

-log(*X*) histogram obtained by the division of *-log*(*X*) histogram for the events containing at least 1 rec. OS charge hadr. *τ*-jet cand. pair

 $\int L dt = 10 fb^{-1}$

by -log(X) histogram for all the events

A natural approach, by answering to the question:

Are the kinematically particular events particular by their multiplicity in (tau-)tagged reconstructed objects too?

The simple observation of a bump in a distribution allows to sign the presence of non-SM events, without preselection except at trigger level.

The null hypothesis *-data contain only SM events-* is tested, not by the comparison between expected and observed numbers of events in the tail of a distribution (ex:MET), but by the comparison between fractions of events with >0 tau cand. pair in such a tail \rightarrow not sensitive to kinematically badly reconstructed events which would populate the tail.

Problem pointed out by the CMS Statistics Committee- for each sample, X is different : the same event present in two different samples A and B gets not equal X_A and X_B values, \rightarrow difficult comparison between X_A and X_B distributions from A and B samples respectively.

 $\int L dt = 10 f b^{-1}$

SM MC

Method B for observing mSUGRA events in data

expected (extrapolated from control region)

•I have developed 2 methods to detect SUSY events in data, both based on the appearance of an excess of tau-pairs as a function of a kinematical variable

•1st method uses the pseudo-density of events in a kinematical space,

•2nd method divides a kinematical plane into a control region (where SM events dominate) and a signal region (where SUSY events dominate). The SM contribution in the signal region is estimated from the data in the control region.

(other variables were tried ; they did not change the picture significantly.)

Backup slides

Tau reco + id

•The hadr. tau-jet candidates selection scheme used in the following study : (underwent modifications afterwards)

- step 0 : a rec. ECAL+HCAL ΔR <0.50 (*iter cone* algo.) jet with 10GeV < E_{T,rec.jet} < 150GeV* and $|\eta_{rec.jet}|$ < 2.6,

- step 1(tracker) : 0 rec. tk (with P_T >1.5GeV/c) in an $x < \Delta R < 0.40$ isolation annulus, 1 or 3 rec. tk(s) (with P_T >1.5GeV/c) in a $\Delta R \le x$ signal cone around a rec. leading (P_T >5GeV/c if 1 signal tk, >2.5GeV/c if 3 signal tks) tk found in a $\Delta R < 0.17$ matching cone around jet axis

* ORCA version of the likelihood ratio algo. (in step 2') not usable above the upper limit

Tau reco + id

- step 2(ECAL+tracker) : no rec. neutral** ECAL clus. (with E>1GeV) inside jet,

```
    step 2'(ECAL+tracker) : if rec. neutral ECAL clus. inside jet,
then minimal value of a likelihood ratio which combines
the following discriminant variables :
    case 1 signal tk :
    # rec. neutral ECAL clus.,
    = mean ΔR tk- neutr. ECAL clus.,
    = meutr. ECAL clus. in isol. strip/(E neutr. ECAL clus +Ptk),
    = signed flight path significance (secondary vtx reco)
```

- tk transverse impact parameter
- -step 3 : not *e*/μ cand. tagged, using D. J. Mangeol technique (see CMS AN 2006/015) slightly modified.

** specific to an ECAL cluster whose direction is not inside a ΔR 0.015 cone around the direction of contact point between any propagated track and the ECAL surface

The events were simulated with OSCAR and reconstructed with ORCA(8_13_3).

Event selection

- Trigger:
 - L1 #28 bit (1 central jet with ET > 88 GeV + ETmiss > 46 GeV)
 - AND. HLT #125 bit (1 single jet with ET > 180 GeV)
- Tau
 - |Eta-tau| < 2.6
 - ET-tau > 10 GeV
- Jets (gamma jet calibred when not lepton-tagged)
 - |Eta-jet| > 2.6
 - ET-jet >5 GeV
- MET (based on calo-jets)
 - No clean-up
 - No muon correction

mSUGRA LM2 signal cascade/SM discriminating reconstructed variables

Tau-related variable

histogram normalized to unit area.

rec. hadr. τ -jet cand. pairs of OScharge

mSUGRA LM2 signal cascade/SM discriminating reconstructed variables

Tau-related variable

histogram normalized to unit area.

rec. hadr. τ -jet cand. pairs of OScharge

* Distributions normalized to 1

Method A for observing mSUGRA events in data

 $\int L dt = 10 f b^{-1}$

-log(X) histogram obtained by the division of
 -log(X) histogram for the events containing at least 1 rec. OS charge hadr. τ-jet cand. pair

by -log(X) histogram for all the events

SM process events in SM + mSUGRA *LM2* dataset

Systematic uncertainties

uncertainty on the jet E_T resolution (smeared it by 10%),

uncertainty on hadr. Tau-jet ID efficiency

(removed 9% of the truth matched hadr. tau-jet cand.),

- uncertainty on q/g-jet mis. ID efficiency ^{10⁻¹} (added 10% of q/g-jet matched hadr. tau-jet cand.)
- uncertainty on q/g-jet E scale

(increased/decreased rec. q/g-jet cand. E by a fraction dependent on its P_T).

Example in QCD dijet processes nout syst. uncert rith jet E_ resol. smearing ith hadr. jet cand. E scale shifting th hadr. tau-jet ID efficiency uncert. 10⁻³ ith hadr, jet mis. ID efficiency uncert 10⁻⁴ 10⁻⁵ 10⁻⁶ 10⁻⁷

10⁻⁸

100

200

300

400

500

70

QCD dijet processes

QCD diiet processes

mSUGRA *LM2* processes

Method A for pointing out the presence of mSUGRA LM2 events in data

(kinematic reference variable : -log(X)) SM + mSUGRA *LM2* dataset

*

 $\int L dt = 10 fb^{-1}$

Method A' for pointing out the presence of mSUGRA LM2 events in data

Method A for observing mSUGRA events in data

 $\int L dt = 10 fb^{-1}$

* with binomial errors

Same histograms as on slide 16 except the mSUGRA test point used, **now LM1**

 $\int L dt = 10 fb^{-1}$

• at *LM1* (test point defined by $m_{1/2}=250$ GeV/c², $m_0=60$ GeV/c², $A_0=0$, tan $\beta=10$, sign(μ)=+), expected LO $\sigma = 49.00$ pb , BR($\tilde{\chi}_2^0 \rightarrow \tilde{\tau} \tau$) ≈ 0.46 , 15.0% of the mSUGRA events contain at least 1 signal cascade.

SM dataset SM + mSUGRA LM1 dataset 0.01 900.02 900.03 900.00 900.00 900.00 0.0 0.0 0.01 <u>مارد</u> 40.009 _______0 800.09. cand 70.007 di-1 00.006 .≨0.005 C 0.003 រ ភ្លួ0.004 ⊂⁸0.003 0.002 0.002 0.001 0.001 °0 15 20 -log(X 25 5 10 15 20 25 5 10 -log(λ

An estimator of the significance of the observed peak

in the SM+mSUGRA LM2 histogram resulting of the division of 2 histograms

-in the kinematically most particular region (in a ($E_T^{2nd q/g-jet cand.}, E_T^{miss}$)) space), no excess of events containing more rec. OS charge hadr. τ -jet cand. pairs than the mass of the events,

-small dependency between the kinematic variable X_{SM} and the fraction of events

with ≥ 1 OS di-tau cand.-related variable.

From the upper-right plot, -in the SM+mSUGRA LM2 sample- : -we define a $-log(X_{SM+mSUGRA LM2})$ signal region : $13 \le -log(X_{SM+mSUGRA LM2}) \le 25$ -we estimate SM fraction of events with ≥ 1 OS di-tau cand.-related variable in signal region 3^{2} the value given by the fit at $-log(X_{SM+mSUGRA LM2}) = 19$ (middle of the region) + its error : 8.41×10^{-4} ... an estimator of the significance of the observed peak in the SM+mSUGRA *LM2* histogram resulting of the division of 2 histograms

The observed number of SM+mSUGRA *LM2* events with $13 \le -log(X_{SM+mSUGRA LM2}) <25$ is equal to <u>133284</u>.

The expected SM number of events with $13 \le -log(X_{SM+mSUGRA LM2}) < 25$ and ≥ 1 rec. OS charge hadr. τ -jet cand. pair(s) is set equal to $8.41 \times 10^{-4} \times 133284 \approx 112$. The observed SM+mSUGRA LM2 number of events with $13 \le -log(X_{SM+mSUGRA LM2}) < 25$ and ≥ 1 rec. OS charge hadr. τ -jet cand. pair(s), is equal to 424.

 $\int L dt = 10 f b^{-1}$

34

•We observe again the number of events with at least 1 di-tau as a function of a the kinematical variable $E_T^{miss} + E_T^{2nd q/g-jet,}$

Method B for observing mSUGRA events in data

Method B for observing mSUGRA events in data

In case the SM+mSUGRA *LM2* event sample is the one observed, we estimate an expected fraction of SM process events with OS di- τ as a function of $E_{T}^{miss} + E_{T}^{2nd q/g-jet cand.}$ in signal region :

per bin in $E_T^{miss} + E_T^{2nd q/g-jet cand.}$:

Method B for pointing out the presence of mSUGRA events in data

 $\int L dt = 10 f b^{-1}$

The correction function

We define 2 regions (control region, dominated by SM events and signal region, dominated by SUSY events) using $\Delta \Phi_{MET-1st \ highest \ ET \ calo. \ jet} + \Delta \Phi_{MET-2nd}$ highest ET calo. jet <3.5 or >3.5, respectively

