Benchmarking the NMSSM with NMSSMTools 2.0

GDR SUSY, Strasbourg April 2008

Cyril Hugonie

Cyril.Hugonie@univ-montp2.fr

LPTA, Montpellier

C. Hugonie, GDR SUSY'08 - p.1/21

Why The NMSSM?

- No Higgs observed at LEP \Rightarrow High fine tuning in the MSSM
- μ -problem of the MSSM: $\mu \stackrel{?}{\sim} M_{susy} \sim M_{weak}$
 - $\mu = 0 \rightsquigarrow$ experimentally excluded
 - $\mu = M_{\rm Pl} \rightsquigarrow$ hierarchy problem

Why The NMSSM?

- No Higgs observed at LEP \Rightarrow High fine tuning in the MSSM
- μ -problem of the MSSM: $\mu \stackrel{?}{\sim} M_{
 m susy} \sim M_{
 m weak}$
 - $\mu = 0 \rightsquigarrow$ experimentally excluded
 - $\mu = M_{\rm Pl} \rightsquigarrow$ hierarchy problem
- Solution: add a singlet *S* coupled to H_u, H_d $W_{\text{NMSSM}} = \int H_d H_d + \lambda S H_u H_d + \frac{\kappa}{3} S^3$ (+ Yukawas)

After minimisation of the potential: $\mu_{\rm eff} \equiv \lambda \langle S \rangle \sim M_{\rm susy}$

Why The NMSSM?

- No Higgs observed at LEP \Rightarrow High fine tuning in the MSSM
- μ -problem of the MSSM: $\mu \stackrel{?}{\sim} M_{
 m susy} \sim M_{
 m weak}$
 - $\mu = 0 \rightsquigarrow$ experimentally excluded
 - $\mu = M_{\rm Pl} \rightsquigarrow$ hierarchy problem
- Solution: add a singlet *S* coupled to H_u, H_d $W_{\text{NMSSM}} = \mu H_d H_d + \lambda S H_u H_d + \frac{\kappa}{3} S^3$ (+ Yukawas)

After minimisation of the potential: $\mu_{\text{eff}} \equiv \lambda \langle S \rangle \sim M_{\text{susy}}$

- Simplest SUSY extension of the SM where the EW scale originates from the SUSY breaking scale only
- $$\label{eq:lambda} \begin{split} & \lambda \to 0, \mu_{eff} \neq 0 \text{: MSSM + decoupled singlet sector} \\ & \Rightarrow \text{The parameter space of the NMSSM includes the} \\ & \text{physics of the MSSM and more} \end{split}$$

What's the NMSSM?

Particle content:

- \widetilde{S} : one more neutralino $\iff \widetilde{\chi}_{i=1..5}^{0}$
- S_R : one more neutral CP even $\longleftrightarrow h_{i=1,2,3}$
- S_I : one more neutral CP odd $\iff a_{i=1,2}$
- \Rightarrow New Physics beyond the MSSM (\widetilde{S} LSP, light $h \rightarrow aa$)

What's the NMSSM?

Particle content:

- \widetilde{S} : one more neutralino $\iff \widetilde{\chi}_{i=1..5}^{0}$
- S_R : one more neutral CP even $\longleftrightarrow h_{i=1,2,3}$
- S_I : one more neutral CP odd $\iff a_{i=1,2}$
- \Rightarrow New Physics beyond the MSSM (\widetilde{S} LSP, light $h \rightarrow aa$)
- Parameters: $V_{\text{Higgs}} = V_F + V_D + V_{\text{soft}}$ $V_{\text{soft}} = \left(\lambda A_{\lambda} H_u H_d S + \frac{\kappa}{3} A_{\kappa} S^3 + \text{h.c.}\right) + m_{H_u}^2 |H_u|^2 + m_{H_d}^2 |H_d|^2 + m_S^2 |S|^2$

What's the NMSSM?

Particle content:

- \widetilde{S} : one more neutralino $\iff \widetilde{\chi}_{i=1..5}^{0}$
- S_R : one more neutral CP even $\longleftrightarrow h_{i=1,2,3}$
- S_I : one more neutral CP odd $\iff a_{i=1,2}$
- \Rightarrow New Physics beyond the MSSM (\widetilde{S} LSP, light $h \rightarrow aa$)
- Parameters: V_{Higgs} = V_F + V_D + V_{soft} $V_{soft} = \left(\lambda A_{\lambda} H_u H_d S + \frac{\kappa}{3} A_{\kappa} S^3 + \text{h.c.}\right) + m_{H_u}^2 |H_u|^2 + m_{H_d}^2 |H_d|^2 + m_S^2 |S|^2$ + 3 minimisation conditions: $\mu_{eff} = \lambda \langle S \rangle, \quad \tan\beta = \frac{\langle H_u \rangle}{\langle H_d \rangle}, \quad M_Z^2 = \bar{g}^2 \left(\langle H_u \rangle^2 + \langle H_d \rangle^2\right)$ ⇒ 6 free parameters: $\lambda, \kappa, A_{\lambda}, A_{\kappa}, \mu_{eff}, \tan\beta$ Recall: in the MSSM, 2 free parameters $(m_A, \tan\beta)$

- <u>mSUGRA:</u> $M_{1/2}$, m_0 , A_0 (M_{GUT}), λ , κ , $\tan\beta$, $\operatorname{sgn}(\mu_{\text{eff}})$ (M_{weak})?
 - \implies 1 free parameter (μ_{eff}) for 3 min. conditions at M_{weak}

• <u>mSUGRA:</u> $M_{1/2}$, m_0 , A_0 (M_{GUT}), λ , κ , $\tan\beta$, $\operatorname{sgn}(\mu_{\text{eff}})$ (M_{weak})? \implies 1 free parameter (μ_{eff}) for 3 min. conditions at M_{weak} Solution: non-universal singlet soft terms at M_{GUT} Parameters: λ , $\tan\beta$, $\operatorname{sgn}(\mu_{\text{eff}})$, $M_{1/2}$, m_0 , A_0 , [A_{κ}] Minimisation conditions $\implies \mu_{\text{eff}}$, κ , m_S^2 at M_{weak}

- <u>mSUGRA:</u> $M_{1/2}$, m_0 , A_0 (M_{GUT}), λ , κ , $\tan\beta$, $\operatorname{sgn}(\mu_{\text{eff}})$ (M_{weak})? \Rightarrow 1 free parameter (μ_{eff}) for 3 min. conditions at M_{weak} Solution: non-universal singlet soft terms at M_{GUT} Parameters: λ , $\tan\beta$, $\operatorname{sgn}(\mu_{\text{eff}})$, $M_{1/2}$, m_0 , A_0 , [A_{κ}] Minimisation conditions $\Rightarrow \mu_{\text{eff}}$, κ , m_S^2 at M_{weak}
 - Guess $M_{
 m GUT}$ and κ , m_S^2 at this scale
 - Run the RGEs down to $M_{
 m weak}$, compute $\mu_{
 m eff}$, κ , m_S^2
 - Run the RGEs up to M_{GUT} , distance from universality \implies For the true CNMSSM see talk by A. Teixeira

- <u>mSUGRA:</u> $M_{1/2}$, m_0 , A_0 (M_{GUT}), λ , κ , $\tan\beta$, $\operatorname{sgn}(\mu_{\text{eff}})$ (M_{weak})? \implies 1 free parameter (μ_{eff}) for 3 min. conditions at M_{weak} Solution: non-universal singlet soft terms at M_{GUT} Parameters: λ , $\tan\beta$, $\operatorname{sgn}(\mu_{\text{eff}})$, $M_{1/2}$, m_0 , A_0 , [A_{κ}] Minimisation conditions $\implies \mu_{\text{eff}}$, κ , m_S^2 at M_{weak}
 - Guess $M_{\rm GUT}$ and κ , m_S^2 at this scale
 - Run the RGEs down to $M_{
 m weak}$, compute $\mu_{
 m eff}$, κ , m_S^2
 - Run the RGEs up to M_{GUT} , distance from universality \implies For the true CNMSSM see talk by A. Teixeira
- <u>GMSB:</u> messenger scale M_{mess} and $M_{\text{susy}} \equiv m^2/(16\pi^2 M_{\text{mess}})$ $\Delta V_{\text{soft}} = \left(\lambda A_{\lambda} H_u H_d S + \frac{\kappa}{3} A_{\kappa} S^3 + m_S'^2 S^2 + \xi_S S + \text{h.c.}\right) + m_S^2 |S|^2$ $+\Delta m_{H_U}^2 = \Delta m_{H_D}^2 = -\frac{\lambda^2}{(16\pi^2)^2} \Delta_H M_{\text{susy}}^2$ and $\Delta W = \mu' S^2 + \xi_F S$ \implies See talk by U. Ellwanger

NMSSMTools 2.0

- Package that contains 3 programs:
 - NMHDECAY for general NMSSM
 - NMSPEC for mSUGRA (with some non-universality)
 - NMGMSB for GMSB (new in v2.0)

each in 3 versions: 1point, random scan, grid scan

NMSSMTools 2.0

- Package that contains 3 programs:
 - NMHDECAY for general NMSSM
 - NMSPEC for mSUGRA (with some non-universality)
 - NMGMSB for GMSB (new in v2.0) each in 3 versions: 1point, random scan, grid scan
- For a given set of free parameters, it computes:
 - Sparticle/Higgs masses and mixings
 - Higgs decay widths (as in HDECAY)
 - DM relic density (using MicrOMEGAs 2.0)

 \implies See talk by G. Bélanger

• $b \to s\gamma$, $B_s \to \mu\mu$, $B^+ \to \tau\nu$, Δm_d , Δm_s and a_μ

 \implies See talk by F. Domingo

NMSSMTools 2.0

- Package that contains 3 programs:
 - NMHDECAY for general NMSSM
 - NMSPEC for mSUGRA (with some non-universality)
 - NMGMSB for GMSB (new in v2.0) each in 3 versions: 1point, random scan, grid scan
- For a given set of free parameters, it computes:
 - Sparticle/Higgs masses and mixings
 - Higgs decay widths (as in HDECAY)
 - DM relic density (using MicrOMEGAs 2.0)

 \implies See talk by G. Bélanger

• $b \to s\gamma$, $B_s \to \mu\mu$, $B^+ \to \tau\nu$, Δm_d , Δm_s and a_μ

 \Longrightarrow See talk by F. Domingo

- I/O files in SLHA2 conventions + script run PATH/PinpS:
 - \Rightarrow PATH/PspectrS, PdecayS, PomegaS (1point)
 - \Rightarrow PATH/PoutS, PerrS (scan) new in v2.0

Input file (1) mSUGRA

# INF # BAS	PUT FILE SED ON SU	FOR NMSSMTools SY LES HOUCHES A	CCORD II
BLOCK	MODSEL		
	3	1	# NMSSM PARTICLE CONTENT
	1	1	<pre># IMOD (0=qeneral NMSSM, 1=mSUGRA, 2=GMSB)</pre>
	10	0	# ISCAN (0=NO SCAN, 1=GRID, 2=RANDOM)
	9	0	# FLAG FOR MICROMEGAS (0=NO, 1=YES)
BLOCK	SMINPUT	5	
	1	- 127.92D0	# ALPHA EM^-1(MZ)
	2	1.16639D-5	# GF
	3	.1172D0	# ALPHA S(MZ)
	4	91.187DO	# MZ
	5	4.214D0	# MB(MB), RUNNING B QUARK MASS
	6	171.400	# TOP QUARK POLE MASS
	3	1.777DO	# MTAU
BLOCK	MINPAR		
#	0	1000.DO	<pre># QSUSY (IF DIFFERENT FROM SQRT(2*MQ1+MU1+MD1)/2)</pre>
	1	300.D0	# MO
	2	250.DO	# M12
	3	6.D0	# TB
	4	1.DO	# SIGMU
	5	-900.DO	# A0
BLOCK	EXTPAR		
	61	. 25DO	# L
	64	-150.D0	# AK (IF DIFFERENT FROM A0)
#	63	-900.DO	# AL (IF DIFFERENT FROM AO)
#	21	300. во	# MHDGUT (IF DIFFERENT FROM MO)
#	22	300.D0	# MHUGUT (IF DIFFERENT FROM MO)
#	1	250.DO	# M1 (IF DIFFERENT FROM M12)
#	2	250.DO	# M2 (IF DIFFERENT FROM M12)
#	3	250.D0	# M3 (IF DIFFERENT FROM M12)

Input file (2) Grid scan

BLOCK	MODSEL		
	3	1	# NMSSM PARTICLE CONTENT
	1	1	# IMOD (0=general NMSSM, 1=mSUGRA, 2=GMSB
	10	1	<pre># ISCAN (0=NO SCAN, 1=GRID, 2=RANDOM)</pre>
	9	1	# FLAG FOR MICROMEGAS (0=NO, 1=YES)
BLOCK	SMINPUTS	i anna anna	
	1	127.92D0	# ALPHA EM^-1(MZ)
	2	1.16639D-5	# GF
	3	.1172D0	# ALPHA S(MZ)
	4	91.187D0	# MZ
	5	4.214D0	# MB(MB), RUNNING B QUARK MASS
	6	171.4D0	# TOP OUARK POLE MASS
	7	1.777D0	# MTAU
BLOCK	MINPAR		
	4	1.DO	# SIGMU
	17	0.D0	# MOMIN
	18	600.D0	# MOMAX
	27	100.D0	# M12MIN
	28	1100.D0	# M12MAX
	37	10.DO	# TBMIN
	38	10.D0	# TBMAX
	57	-20.D0	# AOMIN
	58	-20.DO	# AOMAX
BLOCK	EXTPAR		
	617	1.D-2	# LMIN
	618	1.D-2	# LMAX
	647	-50.D0	# AKMIN
	648	-50.DO	# AKMAX
BLOCK	STEPS		
	19	500	# NMO
	29	500	# NM12
	39	1	# NTB
	59	1	# NAO
	619	1	# NL
	649	1	# NAK

Experimental constraints

For each point in the parameter space, NMSSMTools checks:

- \checkmark $\widetilde{\chi}^0_1$ is the LSP
- LEP limits on $\tilde{\chi}^{\pm}$'s and $\tilde{\chi}^{0}$'s (direct search + $\Gamma_{inv}(Z)$)
- Tevatron + LEP constraints on squarks/gluino
- LEP limit on the charged Higgs mass $m_{h^{\pm}} > 78.6 \text{ GeV}$
- LEP constraints from neutral Higgs searches:
 - $e^+e^- \rightarrow hZ$ with $h \rightarrow b\overline{b}$, $\tau^+\tau^-$, jj, $\gamma\gamma$, invisible, "any"
 - $e^+e^- \rightarrow hZ$ with $h \rightarrow aa$ and $a \rightarrow b\overline{b}$ or $\tau^+\tau^-$
 - $e^+e^- \rightarrow ha$ with $h/a \rightarrow b\bar{b}$ or $\tau^+\tau^-$
 - $e^+e^- \rightarrow ha$ with $h \rightarrow aa$ and $a \rightarrow b\overline{b}$ or $\tau^+\tau^-$
- WMAP constraints: $.094 < \Omega h^2 < .136$
- BABAR and BELLE limits on B physics
- BNL constraints on a_{μ} from e^+e^- data (3σ from SM)

Results with semi-universality

• If $\lambda \ll 1$, \tilde{S} can be the LSP \implies additional cascades at LHC Can this scenario be compatible with WMAP? YES! ... modulo some fine tuning $(m_{\tilde{S}} - m_{\rm NSLP} \lesssim 1 \,{\rm GeV})$

Results with semi-universality

- If $\lambda \ll 1$, \tilde{S} can be the LSP \implies additional cascades at LHC Can this scenario be compatible with WMAP? YES! ... modulo some fine tuning $(m_{\tilde{S}} - m_{\text{NSLP}} \lesssim 1 \,\text{GeV})$
 - $\mu A_{\kappa} < 0$: singlet masses \nearrow with m_0 and/or $M_{1/2}$ $\implies \widetilde{S}$ LSP for small values of m_0 and/or $M_{1/2}$

Singlino LSP (1) $\lambda = .01, \mu A_{\kappa} < 0$

 $\tan\beta = 5$, $A_0 = 200 \text{ GeV}$, $A_{\kappa} = -10 \text{ GeV}$

$$\tan\beta = 10, \ A_0 = -20 \text{ GeV}, \ A_{\kappa} = -50 \text{ GeV}$$

Results with semi-universality

- If $\lambda \ll 1$, \tilde{S} can be the LSP \implies additional cascades at LHC Can this scenario be compatible with WMAP? YES! ... modulo some fine tuning $(m_{\tilde{S}} - m_{\rm NSLP} \lesssim 1 \,{\rm GeV})$
 - $\mu A_{\kappa} < 0$: singlet masses \nearrow with m_0 and/or $M_{1/2}$ $\implies \widetilde{S}$ LSP for small values of m_0 and/or $M_{1/2}$
 - $\mu A_{\kappa} > 0$: singlet masses \searrow with m_0 and $M_{1/2}$ $\implies \widetilde{S}$ LSP for large values of m_0 and $M_{1/2}$

Singlino LSP (2) $\lambda = .01, \mu A_{\kappa} > 0$

$$\tan\beta = 10, \ A_0 = 250 \text{ GeV}, \ A_{\kappa} = 270 \text{ GeV}$$

$$\tan\beta = 5$$
, $A_0 = 750 \text{ GeV}$, $A_{\kappa} = 10 \text{ GeV}$

Results with semi-universality

- If $\lambda \ll 1$, \tilde{S} can be the LSP \implies additional cascades at LHC Can this scenario be compatible with WMAP? YES! ... modulo some fine tuning $(m_{\tilde{S}} - m_{\text{NSLP}} \lesssim 1 \,\text{GeV})$
 - $\mu A_{\kappa} < 0$: singlet masses \nearrow with m_0 and/or $M_{1/2}$ $\implies \widetilde{S}$ LSP for small values of m_0 and/or $M_{1/2}$
 - $\mu A_{\kappa} > 0$: singlet masses \searrow with m_0 and $M_{1/2}$ $\implies \widetilde{S}$ LSP for large values of m_0 and $M_{1/2}$
 - large $\tan\beta$: singlet masses independent of $m_0, M_{1/2}$ $\implies \widetilde{S}$ LSP for large values of $M_{1/2}$ (where \widetilde{B} is heavy)

Singlino LSP (3) $\lambda = .01$, large $\tan\beta$

Results with semi-universality

- If $\lambda \ll 1$, \tilde{S} can be the LSP \implies additional cascades at LHC Can this scenario be compatible with WMAP? YES! ... modulo some fine tuning $(m_{\tilde{S}} - m_{\text{NSLP}} \lesssim 1 \,\text{GeV})$
 - $\mu A_{\kappa} < 0$: singlet masses \nearrow with m_0 and/or $M_{1/2}$ $\implies \widetilde{S}$ LSP for small values of m_0 and/or $M_{1/2}$
 - $\mu A_{\kappa} > 0$: singlet masses \searrow with m_0 and $M_{1/2}$ $\implies \widetilde{S}$ LSP for large values of m_0 and $M_{1/2}$
 - large $\tan\beta$: singlet masses independent of $m_0, M_{1/2}$ $\implies \widetilde{S}$ LSP for large values of $M_{1/2}$ (where \widetilde{B} is heavy)
- If $\lambda \sim .1$: the pseudoscalar singlet *a* could be responsible for the (\tilde{B}) LSP annihilation through $\tilde{B}\tilde{B} \rightarrow a$ resonance Would this *a* be visible at the LHC? **YES... if** tan β **is large**

Extra resonance (1) $\lambda = .1$, $\tan\beta = 5 - 10$

Extra resonance (2) $\lambda = .1$, $\tan\beta = 50$

 $\tan\beta = 50, A_0 = 1500 \text{ GeV}, A_{\kappa} = 250 \text{ GeV}$

$$\tan\beta = 50, \ A_0 = -1500 \text{ GeV}, \ A_{\kappa} = -50 \text{ GeV}$$

Large λ (1) Small tan β

Large values of $\lambda \Rightarrow \text{light } h$

(from singlet/doublet mixing)

Large λ (1) Small tan β

Large values of $\lambda \Rightarrow \text{light } h$ (from singlet/doublet mixing)

9 small $tan\beta$ (max. m_h)

$$\lambda = .5$$
, $\tan \beta = 2$, $A_0 = -1300 \text{ GeV}$, $A_{\kappa} = -1400 \text{ GeV}$

Large λ (1) Small tan β

Large values of $\lambda \Rightarrow \text{light } h$ (from singlet/doublet mixing)

- **9** small $tan\beta$ (max. m_h)
- A_{κ} such that $h \to aa$ LEP limits: if $a \to bb$, $m_h \gtrsim 106 \text{ GeV}$ if $a \to \tau\tau$, $m_h \gtrsim 90 \text{ GeV}$ \implies difficult to see at LHC

$$\lambda = .5$$
, tan $\beta = 2$, A₀ = -1300 GeV, A_k = -1400 GeV

Large λ (2) h \rightarrow aa

Benchmark points for the LHC

A. Djouadi & al., arXiv:hep-ph/0801.4321

■ **BMP1:**
$$m_{h_1} = 120 \text{ GeV}$$
, $m_{a_1} = 40 \text{ GeV}$, rest heavy
Br $(h_1 \rightarrow a_1 a_1) = 90\%$, Br $(a_1 \rightarrow bb) = 90\%$

■ **BMP2:**
$$m_{h_1} = 120 \text{ GeV}, m_{a_1} = 9 \text{ GeV}, \text{ rest heavy}$$

Br $(h_1 \rightarrow a_1 a_1) = 92\%, \text{Br}(a_1 \rightarrow \tau \tau) = 88\%$

■ BMP3: $m_{h_1} = 90 \text{ GeV}, m_{a_1} = 9 \text{ GeV}, \text{ rest heavy}$ $\operatorname{Br}(h_1 \to a_1 a_1) = 99.9\%, \operatorname{Br}(a_1 \to \tau \tau) = 88\%$ BMP1-3: \widetilde{B} LSP coannihilating with $\widetilde{\tau}$ NSLP

Benchmark points for the LHC

A. Djouadi & al., arXiv:hep-ph/0801.4321

■ **BMP1:**
$$m_{h_1} = 120 \text{ GeV}, m_{a_1} = 40 \text{ GeV}, \text{ rest heavy}$$

Br $(h_1 \rightarrow a_1 a_1) = 90\%, \text{Br}(a_1 \rightarrow bb) = 90\%$

■ **BMP2:**
$$m_{h_1} = 120 \text{ GeV}, m_{a_1} = 9 \text{ GeV}, \text{ rest heavy}$$

 $\operatorname{Br}(h_1 \to a_1 a_1) = 92\%, \operatorname{Br}(a_1 \to \tau \tau) = 88\%$

■ BMP3: $m_{h_1} = 90 \text{ GeV}$, $m_{a_1} = 9 \text{ GeV}$, rest heavy $Br(h_1 \rightarrow a_1a_1) = 99.9\%$, $Br(a_1 \rightarrow \tau\tau) = 88\%$ BMP1-3: \widetilde{B} LSP coannihilating with $\widetilde{\tau}$ NSLP

■ **BMP4:**
$$m_{h_2} = 123 \text{ GeV}, m_{h_1} = 32 \text{ GeV}, \text{ rest heavy}$$

 $\operatorname{Br}(h_2 \to h_1 h_1) = 88\%, \operatorname{Br}(h_1 \to bb) = 92\%$
Mixed $\widetilde{H}/\widetilde{S}$ LSP annihilating to WW, Zh_1

Benchmark points for the LHC

A. Djouadi & al., arXiv:hep-ph/0801.4321

■ **BMP1:**
$$m_{h_1} = 120 \text{ GeV}$$
, $m_{a_1} = 40 \text{ GeV}$, rest heavy
Br $(h_1 \rightarrow a_1 a_1) = 90\%$, Br $(a_1 \rightarrow bb) = 90\%$

■ **BMP2:**
$$m_{h_1} = 120 \text{ GeV}, m_{a_1} = 9 \text{ GeV}, \text{ rest heavy}$$

Br $(h_1 \rightarrow a_1 a_1) = 92\%, \text{Br}(a_1 \rightarrow \tau \tau) = 88\%$

■ BMP3: $m_{h_1} = 90 \text{ GeV}, m_{a_1} = 9 \text{ GeV}, \text{ rest heavy}$ $\operatorname{Br}(h_1 \to a_1 a_1) = 99.9\%, \operatorname{Br}(a_1 \to \tau \tau) = 88\%$ BMP1-3: \widetilde{B} LSP coannihilating with $\widetilde{\tau}$ NSLP

■ **BMP4:**
$$m_{h_2} = 123 \text{ GeV}, m_{h_1} = 32 \text{ GeV}, \text{ rest heavy}$$

 $\operatorname{Br}(h_2 \to h_1 h_1) = 88\%, \operatorname{Br}(h_1 \to bb) = 92\%$
Mixed $\widetilde{H}/\widetilde{S}$ LSP annihilating to WW, Zh_1

■ BMP5: $m_{h_1} = 91$ GeV, $m_{h_2} = 118$ GeV, $m_{h_3} = 174$ GeV, $m_{a_1} = 100$ GeV, $m_{a_2} = 170$ GeV, $m_{h^{\pm}} = 188$ GeV \tilde{B} LSP annihilating through h/a resonances BMP4-5: Need non-universal m_{H_u} , m_{H_d} and A_λ

Conclusions

- The NMSSM is a SUSY extension of the SM more general (and more coherent) than the MSSM which phenomenology deserves to be studied (at least) at the same level
- It could be much richer and more complex than the MSSM
 - Singlino LSP giving extra cascades at LHC
 - Pseudoscalar singlet visible at LHC for large $tan\beta$
 - Light *h* might escape LHC if it decays through $h \rightarrow aa$
- NMSSMTools 2.0 is a dedicated package to study it $\implies \text{KEEP POSTED (AND DOWNLOAD) ON:}$

http://www.th.u-psud.fr/NMHDECAY/nmssmtools.html

