Field-theoretical formulations of MOND-like gravity

(MOND = MOdified Newtonian Dynamics)

J.-P. Bruneton and G. Esposito-Farèse

 $\mathcal{GR}\varepsilon\mathbb{C}\mathcal{O}$, Institut d'Astrophysique de Paris

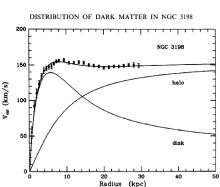
Phys. Rev. D 76 (2007) 124012

Discussions with L. Blanchet, T. Damour, C. Deffayet, B. Fort, G. Mamon, Y. Mellier, M. Milgrom, J. Moffat, R. Sanders, J.-P. Uzan, R. Woodard, etc.

April 30th, 2008

Dark matter and galaxy rotation curves

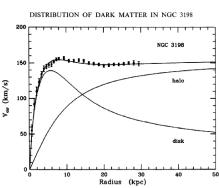
- $\Omega_{\Lambda} \approx 0.7$ (SNIa) and $\Omega_{\Lambda} + \Omega_{m} \approx 1$ (CMB) $\Rightarrow \Omega_{m} \approx 0.3$, at least $10 \times$ greater than estimates of baryonic matter.
- Rotation curves of galaxies and clusters: almost rigid bodies



- \exists many theoretical candidates for dark matter (e.g. from SUSY)
- Numerical simulations of structure formation are successful while incorporating (noninteracting, pressureless) dark matter

Dark matter and galaxy rotation curves

- $\Omega_{\Lambda} \approx 0.7$ (SNIa) and $\Omega_{\Lambda} + \Omega_{m} \approx 1$ (CMB) $\Rightarrow \Omega_{m} \approx 0.3$, at least $10 \times$ greater than estimates of baryonic matter.
- Rotation curves of galaxies and clusters: almost rigid bodies



- ∃ many theoretical candidates for dark matter (e.g. from SUSY)
- Numerical simulations of structure formation are successful while incorporating (noninteracting, pressureless) dark matter

Milgrom's MOND proposal [1983]

MOdified Newtonian Dynamics for small accelerations (i.e., at large distances)

$$a = a_N = \frac{GM}{r^2}$$
 if $a > a_0 \approx 1.2 \times 10^{-10} \,\mathrm{m.s^{-2}}$

$$a = \sqrt{a_0 a_N} = \frac{\sqrt{GMa_0}}{r}$$
 if $a < a_0$

• Automatically recovers the Tully-Fisher law [1977] $v_{\infty}^4 \propto M_{\text{harvonic}}$

 Superbly accounts for galaxy rotation curves (but clusters still require some dark matter)
 [Sanders & McGaugh, Ann. Rev. Astron. Astrophys. 40 (2002) 2

Milgrom's MOND proposal [1983]

Introduction

MOdified Newtonian Dynamics for small accelerations (i.e., at large distances)

$$a = a_N = \frac{GM}{r^2}$$
 if $a > a_0 \approx 1.2 \times 10^{-10} \,\mathrm{m.s^{-2}}$

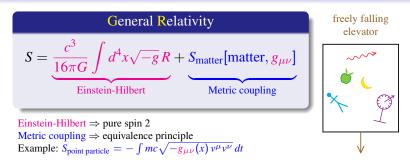
$$a = \sqrt{a_0 a_N} = \frac{\sqrt{GMa_0}}{r}$$
 if $a < a_0$

• Automatically recovers the Tully-Fisher law [1977]

$$v_{\infty}^4 \propto M_{\rm baryonic}$$

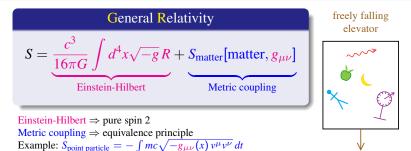
 Superbly accounts for galaxy rotation curves (but clusters still require some dark matter)
 [Sanders & McGaugh, Ann. Rev. Astrophys. 40 (2002) 263]

Modified gravity or modified inertia?



- Modified inertia [Milgrom 1994, 1999]: Keep $S_{\text{Einstein-Hilbert}}[g_{\mu\nu}]$, but look for $S_{\text{point particle}}(\mathbf{x}, \mathbf{v}, \mathbf{a}, \dot{\mathbf{a}}, \dots)$. Galileo invariance \Rightarrow nonlocal! (\Rightarrow causality?)
- Modified gravity: Keep metric coupling, but $S_{\text{gravity}} \neq \text{Einstein-Hilbert} \ (\Rightarrow \text{ extra fields})$
- Other possibilities: Both modifications, or none?

Modified gravity or modified inertia?

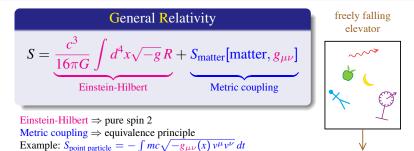


- Modified inertia [Milgrom 1994, 1999]:
 - Keep $S_{\text{Einstein-Hilbert}}[g_{\mu\nu}]$, but look for $S_{\text{point particle}}(\mathbf{x}, \mathbf{v}, \mathbf{a}, \dot{\mathbf{a}}, \dots)$.

Galileo invariance \Rightarrow nonlocal! (\Rightarrow causality?)

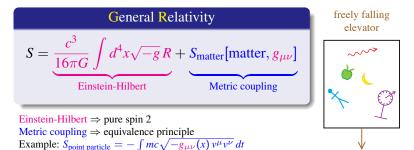
- Modified gravity: Keep metric coupling, but $S_{\text{gravity}} \neq \text{Einstein-Hilbert} \ (\Rightarrow \text{ extra fields})$
- Other possibilities: Both modifications, or none?

Modified gravity or modified inertia?



- Modified inertia [Milgrom 1994, 1999]: Keep $S_{\text{Einstein-Hilbert}}[g_{\mu\nu}]$, but look for $S_{\text{point particle}}(\mathbf{x}, \mathbf{v}, \mathbf{a}, \dot{\mathbf{a}}, \dots)$. Galileo invariance \Rightarrow nonlocal! (\Rightarrow causality?)
- Modified gravity:
 Keep metric coupling, but S_{gravity} ≠ Einstein-Hilbert (⇒ extra fields)
- Other possibilities: Both modifications, or none?

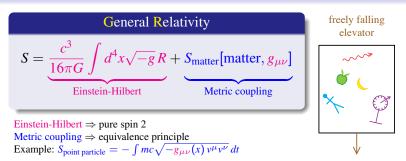
Modified gravity or modified inertia?



- Modified inertia [Milgrom 1994, 1999]: Keep $S_{\text{Einstein-Hilbert}}[g_{\mu\nu}]$, but look for $S_{\text{point particle}}(\mathbf{x}, \mathbf{v}, \mathbf{a}, \dot{\mathbf{a}}, \dots)$. Galileo invariance \Rightarrow nonlocal! (\Rightarrow causality?)
- Modified gravity:
 Keep metric coupling, but S_{gravity} ≠ Einstein-Hilbert (⇒ extra fields)
- Other possibilities: Both modifications, or none?

Modified gravity or modified inertia?

Introduction



- Modified gravity: Keep metric coupling, but $S_{\text{gravity}} \neq \text{Einstein-Hilbert} (\Rightarrow \text{extra fields})$
- Other possibilities:

none?

Introduction

• A priori easy to predict a force $\propto 1/r$: If $V(\varphi) = -2a^2e^{-b\varphi}$, unbounded by below then $\Delta \varphi = V'(\varphi) \Rightarrow \varphi = (2/b)\ln(abr)$.

- Moffat [2004] proposes a consistent field theory (nonsymmetric $g_{\mu\nu}$) but predicts $a = kM^2/r$ instead of \sqrt{M}/r , and assumes then $k = M^{-3/2}$!
- In 2005, he introduced a potential in his model to derive $k = M^{-3/2}$, but the potential depends on M

Introduction

• A priori easy to predict a force $\propto 1/r$: If $V(\varphi) = -2a^2e^{-b\varphi}$, unbounded by below then $\Delta \varphi = V'(\varphi) \Rightarrow \varphi = (2/b)\ln(abr)$.

- Moffat [2004] proposes a consistent field theory (nonsymmetric $g_{\mu\nu}$) but predicts $a=kM^2/r$ instead of \sqrt{M}/r , and assumes then $k=M^{-3/2}$!
- In 2005, he introduced a potential in his model to derive $k = M^{-3/2}$, but the potential depends on M

Introduction

• A priori easy to predict a force $\propto 1/r$: If $V(\varphi) = -2a^2e^{-b\varphi}$, unbounded by below then $\Delta \varphi = V'(\varphi) \Rightarrow \varphi = (2/b)\ln(abr)$. Constant coefficient 2/b instead of \sqrt{M} .

- Moffat [2004] proposes a consistent field theory (nonsymmetric $g_{\mu\nu}$) but predicts $a = kM^2/r$ instead of \sqrt{M}/r , and assumes then $k = M^{-3/2}$!
- In 2005, he introduced a potential in his model to derive $k = M^{-3/2}$, but the potential depends on M

Introduction

• A priori easy to predict a force $\propto 1/r$: If $V(\varphi) = -2a^2e^{-b\varphi}$, unbounded by below then $\Delta \varphi = V'(\varphi) \Rightarrow \varphi = (2/b)\ln(abr)$. Constant coefficient 2/b instead of \sqrt{M} .

- Moffat [2004] proposes a consistent field theory (nonsymmetric $g_{\mu\nu}$) but predicts $a = kM^2/r$ instead of \sqrt{M}/r , and assumes then $k = M^{-3/2}$!
- In 2005, he introduced a potential in his model to derive $k = M^{-3/2}$, but the potential depends on M

Introduction

• A priori easy to predict a force $\propto 1/r$: If $V(\varphi) = -2a^2e^{-b\varphi}$, unbounded by below then $\Delta \varphi = V'(\varphi) \Rightarrow \varphi = (2/b)\ln(abr)$. Constant coefficient 2/b instead of \sqrt{M} .

- Moffat [2004] proposes a consistent field theory (nonsymmetric $g_{\mu\nu}$) but predicts $a = kM^2/r$ instead of \sqrt{M}/r , and assumes then $k = M^{-3/2}$!
- In 2005, he introduced a potential in his model to derive $k = M^{-3/2}$, but the potential depends on M

Introduction

• A priori easy to predict a force $\propto 1/r$: If $V(\varphi) = -2a^2e^{-b\varphi}$, unbounded by below then $\Delta \varphi = V'(\varphi) \Rightarrow \varphi = (2/b)\ln(abr)$. Constant coefficient 2/b instead of \sqrt{M} .

- Moffat [2004] proposes a consistent field theory (nonsymmetric $g_{\mu\nu}$) but predicts $a = kM^2/r$ instead of \sqrt{M}/r , and assumes then $k = M^{-3/2}$!
- In 2005, he introduced a potential in his model to derive $k = M^{-3/2}$, but the potential depends on M

Consistent field theories

Introduction

Field theories

All predictions deriving from a single action

- \exists proposed models in which 2 field equations are inconsistent with each other
- ⇒ violation of conservation laws
- Stability Full Hamiltonian should be bounded by below no tachyon ($m^2 \ge 0$), no ghost ($E_{\text{kinetic}} \ge 0$)
- Well-posed Cauchy problem Hyperbolic field equations

Consistent field theories

Introduction

- Field theories
 - All predictions deriving from a single action
 - \exists proposed models in which 2 field equations are inconsistent with each other
 - ⇒ violation of conservation laws
- Stability

Full Hamiltonian should be bounded by below: no tachyon ($m^2 \ge 0$), no ghost ($E_{\text{kinetic}} \ge 0$)

 Well-posed Cauchy problem Hyperbolic field equations

Consistent field theories

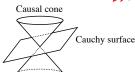
Introduction

- Field theories
 All predictions deriving from a single action
 - ∃ proposed models in which 2 field equations are inconsistent with each other
 - ⇒ violation of conservation laws
- Stability Full Hamiltonian should be bounded by below: no tachyon ($m^2 \ge 0$), no ghost ($E_{\text{kinetic}} \ge 0$)

New route

Conclusions

• Well-posed Cauchy problem Hyperbolic field equations



Quadratic gravity

Introduction

• 't Hooft & Veltman [1974]: Divergence of sooo oos needs

$$\Delta \mathcal{L} = \frac{\sqrt{-g}}{8\pi^2(d-4)} \left[\frac{53}{90} R_{\mu\nu\rho\sigma}^2 - \frac{361}{180} R_{\mu\nu}^2 + \frac{43}{72} R^2 \right]$$
$$= \frac{\sqrt{-g}}{8\pi^2(d-4)} \left[\frac{7}{40} C_{\mu\nu\rho\sigma}^2 + \frac{1}{8} R^2 + \frac{149}{360} GB \right]$$

 $C_{\mu\nu\rho\sigma}$: Weyl tensor (fully traceless)

GB
$$\equiv R_{\mu\nu\rho\sigma}^2 - 4R_{\mu\nu}^2 + R^2$$
: Gauss-Bonnet topological invariant

• Stelle's thesis [1977]: If $\alpha \neq 0$ and $\beta \neq 0$,

Quadratic gravity is renormalizable

$$S_{\text{gravity}} = \int d^4x \sqrt{-g} \left[R + \alpha C_{\mu\nu\rho\sigma}^2 + \beta R^2 + \gamma \text{GB} \right]$$

Quadratic gravity

Introduction

• 't Hooft & Veltman [1974]: Divergence of sooo oos needs

$$\Delta \mathcal{L} = \frac{\sqrt{-g}}{8\pi^2(d-4)} \left[\frac{53}{90} R_{\mu\nu\rho\sigma}^2 - \frac{361}{180} R_{\mu\nu}^2 + \frac{43}{72} R^2 \right]$$
$$= \frac{\sqrt{-g}}{8\pi^2(d-4)} \left[\frac{7}{40} C_{\mu\nu\rho\sigma}^2 + \frac{1}{8} R^2 + \frac{149}{360} GB \right]$$

 $C_{\mu\nu\rho\sigma}$: Weyl tensor (fully traceless) ${
m GB}\equiv R^2_{\mu\nu\rho\sigma}-4R^2_{\mu\nu}+R^2$: Gauss-Bonnet topological invariant

• Stelle's thesis [1977]: If $\alpha \neq 0$ and $\beta \neq 0$,

Quadratic gravity is renormalizable $S_{\text{gravity}} = \int d^4x \sqrt{-g} \left[R + \alpha C_{\mu\nu\rho\sigma}^2 + \beta R^2 + \gamma \text{GB} \right]$

Introduction

But quadratic gravity is unstable!

$$S_{\text{gravity}} = \int d^4x \sqrt{-g} \left[R + \alpha C_{\mu\nu\rho\sigma}^2 + \beta R^2 + \gamma GB \right]$$

Intuitive argument

Propagator
$$\frac{1}{p^2 + \alpha p^4} = \frac{1}{p^2} - \frac{1}{\text{ghost!}} \frac{1}{p^2 + \frac{1}{\alpha}}$$

N.B.: $\frac{1}{\alpha} = m^2$ of extra d° of freedom \Rightarrow negative α gives a tachyon, but anyway a ghos

Full calculation

[Stelle 1977; Hindawi, Ovrut, Waldram 1996; Tomboulis 1996]:

- $R + f(R_{\mu\nu}, R_{\mu\nu\rho\sigma}) \Rightarrow$ extra massive spin-2 ghost \Rightarrow unstable vacuum
- $R + f(R) \Rightarrow$ extra massive spin-0 scalar with $E_{\rm kin} > 0$

Introduction

But quadratic gravity is unstable!

$$S_{\text{gravity}} = \int d^4x \sqrt{-g} \left[R + \alpha C_{\mu\nu\rho\sigma}^2 + \beta R^2 + \gamma GB \right]$$

• Intuitive argument:

Propagator
$$\frac{1}{p^2 + \alpha p^4} = \frac{1}{p^2} \frac{1}{\text{ghost!}} \frac{1}{p^2 + \frac{1}{\alpha}}$$

N.B.: $\frac{1}{\alpha} = m^2$ of extra d° of freedom \Rightarrow negative α gives a tachyon, but anyway a ghost

Full calculation

[Stelle 1977; Hindawi, Ovrut, Waldram 1996; Tomboulis 1996]:

- $R + f(R_{\mu\nu}, R_{\mu\nu\rho\sigma}) \Rightarrow$ extra massive spin-2 ghost \Rightarrow unstable vacuum
- $R + f(R) \Rightarrow$ extra massive spin-0 scalar with $E_{kin} > 0$

Introduction

But quadratic gravity is unstable!

$$S_{\text{gravity}} = \int d^4x \sqrt{-g} \left[R + \alpha C_{\mu\nu\rho\sigma}^2 + \beta R^2 + \gamma GB \right]$$

• Intuitive argument:

Propagator
$$\frac{1}{p^2 + \alpha p^4} = \frac{1}{p^2} \frac{1}{\text{ghost!}} \frac{1}{p^2 + \frac{1}{\alpha}}$$

N.B.: $\frac{1}{\alpha} = m^2$ of extra d° of freedom \Rightarrow negative α gives a tachyon, but anyway a ghost

• Full calculation

[Stelle 1977; Hindawi, Ovrut, Waldram 1996; Tomboulis 1996]:

- $R + f(R_{\mu\nu}, R_{\mu\nu\rho\sigma}) \Rightarrow$ extra massive spin-2 ghost \Rightarrow unstable vacuum
- $R + f(R) \Rightarrow$ extra massive spin-0 scalar with $E_{\rm kin} > 0$

But quadratic gravity is unstable!

$$S_{\text{gravity}} = \int d^4x \sqrt{-g} \left[R + \alpha C_{\mu\nu\rho\sigma}^2 + \beta R^2 + \gamma GB \right]$$

• Intuitive argument:

Propagator
$$\frac{1}{p^2 + \alpha p^4} = \frac{1}{p^2} \frac{1}{\text{ghost!}} \frac{1}{p^2 + \frac{1}{\alpha}}$$

N.B.: $\frac{1}{\alpha} = m^2$ of extra d° of freedom \Rightarrow negative α gives a tachyon, but anyway a ghost

• Full calculation

[Stelle 1977; Hindawi, Ovrut, Waldram 1996; Tomboulis 1996]:

- $R + f(R_{\mu\nu}, R_{\mu\nu\rho\sigma}) \Rightarrow$ extra massive spin-2 ghost \Rightarrow unstable vacuum
- $R + f(R) \Rightarrow$ extra massive spin-0 scalar with $E_{kin} > 0$

But quadratic gravity is unstable!

$$S_{\text{gravity}} = \int d^4x \sqrt{-g} \left[R + \alpha C_{\mu\nu\rho\sigma}^2 + \beta R^2 + \gamma GB \right]$$

• Intuitive argument:

Propagator
$$\frac{1}{p^2 + \alpha p^4} = \frac{1}{p^2} \frac{1}{\text{ghost!}} \frac{1}{p^2 + \frac{1}{\alpha}}$$

N.B.: $\frac{1}{\alpha} = m^2$ of extra d° of freedom \Rightarrow negative α gives a tachyon, but anyway a ghost

• Full calculation

[Stelle 1977; Hindawi, Ovrut, Waldram 1996; Tomboulis 1996]:

- $R + f(R_{\mu\nu}, R_{\mu\nu\rho\sigma}) \Rightarrow$ extra massive spin-2 ghost \Rightarrow unstable vacuum
- $R + f(R) \Rightarrow$ extra massive spin-0 scalar with $E_{kin} > 0$

f(R) as scalar-tensor theories

$$S_{\text{gravity}} = \int d^4x \sqrt{-g} f(R)$$

$$\Leftrightarrow \int d^4x \sqrt{-g} \left\{ f(\Phi) + (R - \Phi)f'(\Phi) \right\}$$

$$= \int d^4x \sqrt{-g} \left\{ f'(\Phi)R - \underbrace{0 \left(\partial_{\mu}\Phi\right)^2}_{\omega_{\text{BD}} = 0} - \underbrace{\left[\Phi f'(\Phi) - f(\Phi)\right]}_{\text{potential}} \right\}$$

- Similarly $f(R, \Box R, ..., \Box^n R) \Rightarrow$ Einstein plus n+1 scalar fields [Gottlöber, Schmidt, Starobinsky 1990; Wands 1994]
- Such scalar fields give generically Yukawa potentials $\propto \frac{e^{-m}}{r}$ \Rightarrow not MOND (potential $\propto \ln r$)

f(R) as scalar-tensor theories

$$S_{\text{gravity}} = \int d^4x \sqrt{-g} f(R)$$

$$\Leftrightarrow \int d^4x \sqrt{-g} \left\{ f(\Phi) + (R - \Phi)f'(\Phi) \right\}$$

$$= \int d^4x \sqrt{-g} \left\{ f'(\Phi)R - \underbrace{0 \left(\partial_{\mu} \Phi\right)^2}_{\omega_{\text{BD}} = 0} - \underbrace{\left[\Phi f'(\Phi) - f(\Phi)\right]}_{\text{potential}} \right\}$$

- Similarly $f(R, \Box R, ..., \Box^n R) \Rightarrow$ Einstein plus n+1 scalar fields [Gottlöber, Schmidt, Starobinsky 1990; Wands 1994]
- Such scalar fields give generically Yukawa potentials $\propto \frac{e^{-m}}{r}$ \Rightarrow not MOND (potential $\propto \ln r$)

f(R) as scalar-tensor theories

$$S_{\text{gravity}} = \int d^4x \sqrt{-g} f(R)$$

$$\Leftrightarrow \int d^4x \sqrt{-g} \left\{ f(\Phi) + (R - \Phi)f'(\Phi) \right\}$$

$$= \int d^4x \sqrt{-g} \left\{ f'(\Phi)R - \underbrace{0 \left(\partial_{\mu} \Phi\right)^2}_{\omega_{\text{BD}} = 0} - \underbrace{\left[\Phi f'(\Phi) - f(\Phi)\right]}_{\text{potential}} \right\}$$

- Similarly $f(R, \Box R, ..., \Box^n R) \Rightarrow$ Einstein plus n+1 scalar fields [Gottlöber, Schmidt, Starobinsky 1990; Wands 1994]
- Such scalar fields give generically Yukawa potentials $\propto \frac{e^{-mr}}{r}$ \Rightarrow not MOND (potential $\propto \ln r$)

f(R) as scalar-tensor theories

$$S_{\text{gravity}} = \int d^4x \sqrt{-g} f(R)$$

$$\Leftrightarrow \int d^4x \sqrt{-g} \left\{ f(\Phi) + (R - \Phi)f'(\Phi) \right\}$$

$$= \int d^4x \sqrt{-g} \left\{ f'(\Phi)R - \underbrace{0 \left(\partial_{\mu} \Phi\right)^2}_{\omega_{\text{BD}} = 0} - \underbrace{\left[\Phi f'(\Phi) - f(\Phi)\right]}_{\text{potential}} \right\}$$

- Similarly $f(R, \square R, \dots, \square^n R) \Rightarrow$ Einstein plus n+1 scalar fields [Gottlöber, Schmidt, Starobinsky 1990; Wands 1994]
- Such scalar fields give generically Yukawa potentials $\propto \frac{e^{-mr}}{r}$ \Rightarrow not MOND (potential $\propto \ln r$)

f(R) as scalar-tensor theories (continued)

We saw that f(R) theories are equivalent to

$$S = \int d^4x \sqrt{-g} \left\{ f'(\Phi)R - 0 \left(\partial_{\mu}\Phi\right)^2 - \left[\Phi f'(\Phi) - f(\Phi)\right] \right\} + S_{\text{matter}}[\text{matter}, g_{\mu\nu}]$$

Let
$$g_{\mu\nu}^* \equiv f'(\Phi)g_{\mu\nu}, \ \varphi \equiv \sqrt{3} \ln f'(\Phi), \ V(\varphi) \equiv \frac{\Phi f'(\Phi) - f(\Phi)}{f'^2(\Phi)}$$

$$\Rightarrow$$

Introduction

Standard scalar-tensor theory

$$S = \int d^4x \sqrt{-g^*} \left\{ R^* - \frac{1}{2} g_*^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi - V(\varphi) \right\}$$

+ $S_{\text{matter}}[\text{matter}, g_{\mu\nu} = e^{\varphi/\sqrt{3}} g_{\mu\nu}^*]$

f(R) as scalar-tensor theories (continued)

We saw that f(R) theories are equivalent to

$$S = \int d^4x \sqrt{-g} \left\{ f'(\Phi)R - 0 \left(\partial_{\mu}\Phi\right)^2 - \left[\Phi f'(\Phi) - f(\Phi)\right] \right\} + S_{\text{matter}}[\text{matter}, g_{\mu\nu}]$$

Let
$$g_{\mu\nu}^* \equiv f'(\Phi)g_{\mu\nu}$$
, $\varphi \equiv \sqrt{3} \ln f'(\Phi)$, $V(\varphi) \equiv \frac{\Phi f'(\Phi) - f(\Phi)}{f'^2(\Phi)}$

$$\Rightarrow \qquad \text{Standard scalar-tensor theory}$$

$$S = \int d^4x \sqrt{-g^*} \left\{ R^* - \frac{1}{2} g_*^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi - V(\varphi) \right\}$$

$$+ S_{\text{matter}}[\text{matter}, g_{\mu\nu} = e^{\varphi/\sqrt{3}} g_{\mu\nu}^*]$$

graviton 000000

scalar

Relativistic aquadratic Lagrangians

"RAQUAL" models
$$S = \int d^4x \sqrt{-g^*} \left\{ R^* - \underbrace{f\left(g_*^{\mu\nu}\partial_{\mu}\varphi\partial_{\nu}\varphi\right)}_{\text{"k-essence"}} - V(\varphi) \right\}$$

$$+ S_{\text{matter}}[\text{matter}, g_{\mu\nu} \equiv A^2(\varphi)g_{\mu\nu}^*]$$

The nonlinearity of $f(\partial_{\mu}\varphi\partial^{\mu}\varphi)$ now allows us to reproduce a MOND-like potential $\sim \sqrt{GMa_0} \ln r$ [Bekenstein & Sanders]:

$$\frac{1}{r^2}\partial_r\left(r^2f'\left[(\partial_r\varphi)^2\right]\partial_r\varphi\right)\propto T$$
 (matter source)

- $f'(x) \rightarrow$ constant for large x: Newtonian limit
- $f'(x) \propto \sqrt{x}$ for small x: MOND regime

Relativistic aquadratic Lagrangians

"RAQUAL" models
$$S = \int d^4x \sqrt{-g^*} \left\{ R^* - \underbrace{f\left(g_*^{\mu\nu}\partial_{\mu}\varphi\partial_{\nu}\varphi\right)}_{\text{"k-essence"}} - V(\varphi) \right\}$$

$$+ S_{\text{matter}}[\text{matter}, g_{\mu\nu} \equiv A^2(\varphi)g_{\mu\nu}^*]$$

The nonlinearity of $f(\partial_{\mu}\varphi\partial^{\mu}\varphi)$ now allows us to reproduce a MOND-like potential $\sim \sqrt{GMa_0} \ln r$ [Bekenstein & Sanders]

$$\frac{1}{r^2} \partial_r \left(r^2 f' \left[(\partial_r \varphi)^2 \right] \partial_r \varphi \right) \propto T \text{ (matter source)}$$

- $f'(x) \rightarrow$ constant for large x: Newtonian limit
- $f'(x) \propto \sqrt{x}$ for small x: MOND regime

Relativistic aquadratic Lagrangians

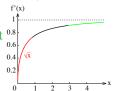
"RAQUAL" models
$$S = \int d^4x \sqrt{-g^*} \left\{ R^* - \underbrace{f\left(g_*^{\mu\nu}\partial_{\mu}\varphi\partial_{\nu}\varphi\right)}_{\text{"k-essence"}} - V(\varphi) \right\}$$

$$+ S_{\text{matter}}[\text{matter}, g_{\mu\nu} \equiv A^2(\varphi)g_{\mu\nu}^*]$$

The nonlinearity of $f(\partial_{\mu}\varphi\partial^{\mu}\varphi)$ now allows us to reproduce a MOND-like potential $\sim \sqrt{GMa_0} \ln r$ [Bekenstein & Sanders]:

$$\frac{1}{r^2}\partial_r\left(r^2f'\left[(\partial_r\varphi)^2\right]\partial_r\varphi\right)\propto T \text{ (matter source)}$$

- $f'(x) \to \text{constant for large } x : \text{Newtonian limit}^{0.8}$
- $f'(x) \propto \sqrt{x}$ for small x: MOND regime



Consistency conditions on $f(\partial_{\mu}\varphi\partial^{\mu}\varphi)$

Hyperbolicity of the field equations + Hamiltonian bounded by below

•
$$\forall x, f'(x) > 0$$

Introduction

$$\bullet \ \forall x, \quad 2xf''(x) + f'(x) > 0$$

N.B.: If f''(x) > 0, the scalar field propagates faster than gravitons, but still causally \Rightarrow no need to impose f''(x) < 0

These conditions become much more complicated within matter

Consistency conditions on $f(\partial_{\mu}\varphi\partial^{\mu}\varphi)$

Hyperbolicity of the field equations + Hamiltonian bounded by below

• $\forall x, f'(x) > 0$

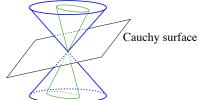
Introduction

• $\forall x$, 2xf''(x) + f'(x) > 0

scalar causal cone graviton causal cone

N.B.: If f''(x) > 0, the scalar field propagates faster than gravitons, but still causally

 \Rightarrow no need to impose f''(x) < 0



These conditions become much more complicated within matter

Consistency conditions on $f(\partial_{\mu}\varphi\partial^{\mu}\varphi)$

Hyperbolicity of the field equations + Hamiltonian bounded by below

 $\bullet \ \forall x, \quad f'(x) > 0$

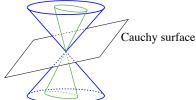
Introduction

 $\bullet \ \forall x, \quad 2xf''(x) + f'(x) > 0$

scalar causal cone graviton causal cone

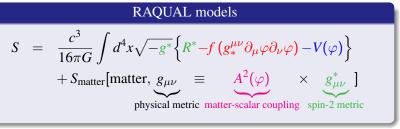
N.B.: If f''(x) > 0, the scalar field propagates faster than gravitons, but still causally

 \Rightarrow no need to impose $f''(x) \le 0$



These conditions become much more complicated within matter

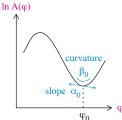
Light deflection



Matter-scalar coupling function

$$\ln A(\phi) = \alpha_0 (\phi - \phi_0) + \frac{1}{2} \beta_0 (\phi - \phi_0)^2 + \dots$$
matter
$$\phi \qquad \phi \qquad \phi$$

Effective gravitational constant



Scalar field \Rightarrow extra attractive force

Light deflection

RAQUAL models

$$S = \frac{c^3}{16\pi G} \int d^4x \sqrt{-g^*} \left\{ R^* - f \left(g_*^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi \right) - V(\varphi) \right\}$$

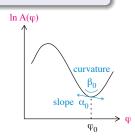
$$+ S_{\text{matter}} \left[\text{matter}, \ g_{\mu\nu} \right] = \underbrace{A^2(\varphi)}_{\text{physical metric matter-scalar coupling spin-2 metric}}_{\text{physical metric matter-scalar coupling spin-2 metric}}$$

Matter-scalar coupling function

$$\ln A(\phi) = \alpha_0 (\phi - \phi_0) + \frac{1}{2}\beta_0 (\phi - \phi_0)^2 + \dots$$
matter
$$\phi \qquad \phi \qquad \phi \qquad \phi$$

• Effective gravitational constant

Scalar field \Rightarrow extra attractive force

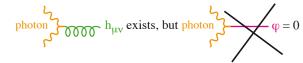


New route

Light deflection (continued)

Introduction

• Conformally related metrics $g_{\mu\nu} \equiv A^2(\varphi)g_{\mu\nu}^*$ ⇒ Light rays do not feel the scalar field: $ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu} = 0 \Leftrightarrow g^*_{\mu\nu}dx^{\mu}dx^{\nu} = 0$



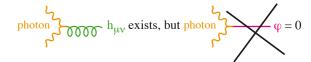
$$\Delta \theta = \frac{4GM}{bc^2}$$
 same as G.R.

$$= \frac{4G_{\text{eff}}M}{bc^2(1+\alpha_0^2)} < \frac{4G_{\text{eff}}M}{bc^2}$$

Light deflection (continued)

Introduction

• Conformally related metrics $g_{\mu\nu} \equiv A^2(\varphi)g^*_{\mu\nu}$ \Rightarrow Light rays do not feel the scalar field: $ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu} = 0 \Leftrightarrow g^*_{\mu\nu}dx^{\mu}dx^{\nu} = 0$



Light deflection angle

$$\Delta\theta = \frac{4GM}{bc^2} \text{ same as G.R.}$$

$$= \frac{4G_{\text{eff}}M}{bc^2(1+\alpha_0^2)} < \frac{4G_{\text{eff}}M}{bc^2}$$

star

interpreted as smaller than G.R. because $G_{\text{eff}} > G_{\text{bare}}$

[N.B.: ∃ an erroneous theorem (overstatement) by Bekenstein & Sanders about this]

"Disformal" coupling

Introduction

Stratified theories

[Ni, Sanders, Bekenstein (TeVeS)]

$$S = \frac{c^3}{16\pi G} \int d^4x \sqrt{-g^*} \Big\{ R^* - 2f(g_*^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi) \Big\}$$

+ $S_{\text{matter}} \Big[\text{matter} ; g_{\mu\nu} \equiv A^2(\varphi, U) g_{\mu\nu}^* + B(\varphi, U) U_{\mu} U_{\nu} \Big]$

- U_{μ} is either a new vector field, or $\partial_{\mu}\varphi$ itself
- $A^2 > 0$ and $A^2 + Bg_*^{\mu\nu}U_{\mu}U_{\mu} > 0$ necessary for hyperbolicity (in addition to the previous conditions on f).

New route

Stratified theories

Introduction

Trick to increase light deflection (as dark matter does)

• Since Schwarzschild is such that $-g_{00} = g_{rr}^{-1} = (1 - \frac{2GM}{rr^2}),$ let us couple φ inversely to g_{00}^* and g_{ii}^* , say

$$g_{00} \equiv e^{2\varphi} g_{00}^*$$
 and $g_{ij} \equiv e^{-2\varphi} g_{ij}^*$

$$g_{\mu\nu} = e^{-2\varphi} \left(g_{\mu\nu}^* + U_{\mu} U_{\nu} \right) - e^{2\varphi} U_{\mu} U_{\nu}$$

= $e^{-2\varphi} g_{\mu\nu}^* - 2 U_{\mu} U_{\nu} \sinh(2\varphi)$

Stratified theories

Introduction

Trick to increase light deflection (as dark matter does)

• Since Schwarzschild is such that $-g_{00} = g_{rr}^{-1} = \left(1 - \frac{2GM}{rc^2}\right)$, let us couple φ inversely to g_{00}^* and g_{ij}^* , say

$$g_{00} \equiv e^{2\varphi} g_{00}^*$$
 and $g_{ij} \equiv e^{-2\varphi} g_{ij}^*$

• Covariant rewriting:

Let a vector $U_{\mu} = (1, 0, 0, 0)$ in this preferred frame.

 \Rightarrow Define the physical metric (minimally coupled to matter) as

$$g_{\mu\nu} = e^{-2\varphi} \left(g_{\mu\nu}^* + U_{\mu}U_{\nu} \right) - e^{2\varphi}U_{\mu}U_{\nu}$$

= $e^{-2\varphi}g_{\mu\nu}^* - 2U_{\mu}U_{\nu}\sinh(2\varphi)$

- N.B.2: Preferred-frame effects strongly constrained in solar system

Conclusions

Stratified theories

Introduction

Trick to increase light deflection (as dark matter does)

• Since Schwarzschild is such that $-g_{00} = g_{rr}^{-1} = \left(1 - \frac{2GM}{rc^2}\right)$, let us couple φ inversely to g_{00}^* and g_{ij}^* , say

$$g_{00} \equiv e^{2\varphi} g_{00}^*$$
 and $g_{ij} \equiv e^{-2\varphi} g_{ij}^*$

• Covariant rewriting:

Let a vector $U_{\mu} = (1, 0, 0, 0)$ in this preferred frame.

 \Rightarrow Define the physical metric (minimally coupled to matter) as

$$g_{\mu\nu} = e^{-2\varphi} \left(g_{\mu\nu}^* + U_{\mu}U_{\nu} \right) - e^{2\varphi}U_{\mu}U_{\nu}$$

= $e^{-2\varphi}g_{\mu\nu}^* - 2U_{\mu}U_{\nu}\sinh(2\varphi)$

- N.B.1: Other factors depending on φ would give a different light deflection ⇒ this is ad hoc!
- N.B.2: Preferred-frame effects strongly constrained in solar system

Stratified theories

Introduction

Trick to increase light deflection (as dark matter does)

• Since Schwarzschild is such that $-g_{00} = g_{rr}^{-1} = \left(1 - \frac{2GM}{rc^2}\right)$, let us couple φ inversely to g_{00}^* and g_{ii}^* , say

$$g_{00} \equiv e^{2\varphi} g_{00}^*$$
 and $g_{ij} \equiv e^{-2\varphi} g_{ij}^*$

• Covariant rewriting:

Let a vector $U_{\mu} = (1, 0, 0, 0)$ in this preferred frame.

 \Rightarrow Define the physical metric (minimally coupled to matter) as

$$g_{\mu\nu} = e^{-2\varphi} \left(g_{\mu\nu}^* + U_{\mu}U_{\nu} \right) - e^{2\varphi}U_{\mu}U_{\nu}$$

= $e^{-2\varphi}g_{\mu\nu}^* - 2U_{\mu}U_{\nu}\sinh(2\varphi)$

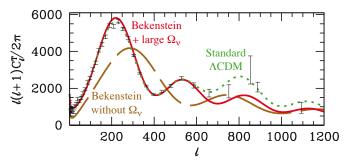
- N.B.1: Other factors depending on φ would give a different light deflection
 ⇒ this is ad hoc!
- N.B.2: Preferred-frame effects strongly constrained in solar system

MOND cosmology?

- No MOND regime in dense Universe at high redshifts \Rightarrow Too small Ω_{baryon} to account for structure formation [Lue & Starkman 2004]
- Skordis *et al.* [2006] need $\Omega_{\nu} = 0.17$ for CMF (not far from $\Omega_{\rm DM} = 0.24$) $\Rightarrow \exists$ dark matter!

MOND cosmology?

- No MOND regime in dense Universe at high redshifts \Rightarrow Too small Ω_{baryon} to account for structure formation [Lue & Starkman 2004]
- Skordis *et al.* [2006] need $\Omega_{\nu} = 0.17$ for CMB (not far from $\Omega_{\rm DM} = 0.24$) $\Rightarrow \exists$ dark matter!



- Action/reaction, light deflection & CMB: ∃ solutions
- Complicated Lagrangians (unnatural)
- Fine tuning (≈ fit rather than predictive models):
 Possible to predict different lensing and rotation curves
- Discontinuities: can be cured
- In TeVeS [Bekenstein], gravitons & scalar are slower than photons
 ⇒ gravi-Cerenkov radiation suppresses high-energy cosmic rays
 [Moore et al. 2001–05]
 - Solution: Accept slower photons than gravitons
- \exists preferred frame (ether) where vector $U_{\mu} = (1,0,0,0)$ Maybe not too problematic if U_{μ} is dynamical
- Vector contribution to Hamiltonian unbounded by below [Clayton 2001] ⇒ unstable model
- Post-Newtonian tests very constraining

Introduction

- Action/reaction, light deflection & CMB: ∃ solutions
- Complicated Lagrangians (unnatural)
- Fine tuning (\approx fit rather than predictive models):

Possible to predict different lensing and rotation curves

- Discontinuities: can be cured
- In TeVeS [Bekenstein], gravitons & scalar are slower than photons
 ⇒ gravi-Cerenkov radiation suppresses high-energy cosmic rays
 [Moore et al. 2001–05]

Solution: Accept slower photons than gravitons

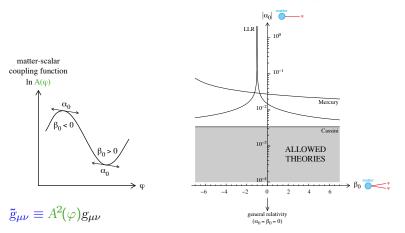
- \exists preferred frame (ether) where vector $U_{\mu} = (1, 0, 0, 0)$ Maybe not too problematic if U_{μ} is dynamical
- Vector contribution to Hamiltonian unbounded by below [Clayton 2001] ⇒ unstable model
- Post-Newtonian tests very constraining

- Action/reaction, light deflection & CMB: ∃ solutions
- Complicated Lagrangians (unnatural)
- Fine tuning (≈ fit rather than predictive models):
 Possible to predict different lensing and rotation curves
- Discontinuities: can be cured
- In TeVeS [Bekenstein], gravitons & scalar are slower than photons
 ⇒ gravi-Cerenkov radiation suppresses high-energy cosmic rays
 [Moore et al. 2001–05]
 - Solution: Accept slower photons than gravitons
- \exists preferred frame (ether) where vector $U_{\mu} = (1, 0, 0, 0)$ Maybe not too problematic if U_{μ} is dynamical
- Vector contribution to Hamiltonian unbounded by below [Clayton 2001] ⇒ unstable model
- Post-Newtonian tests very constraining

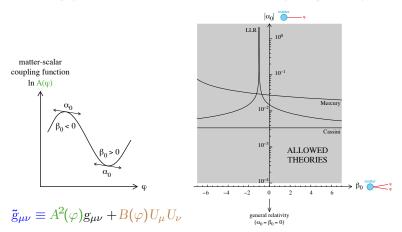
- Action/reaction, light deflection & CMB: ∃ solutions
- Complicated Lagrangians (unnatural)
- Fine tuning (≈ fit rather than predictive models):
 Possible to predict different lensing and rotation curves
- Discontinuities: can be cured
- In TeVeS [Bekenstein], gravitons & scalar are slower than photons
 ⇒ gravi-Cerenkov radiation suppresses high-energy cosmic rays
 [Moore et al. 2001–05]
 - Solution: Accept slower photons than gravitons
- \exists preferred frame (ether) where vector $U_{\mu} = (1, 0, 0, 0)$ Maybe not too problematic if U_{μ} is dynamical
- Vector contribution to Hamiltonian unbounded by below [Clayton 2001] ⇒ unstable model
- Post-Newtonian tests very constraining

- Action/reaction, light deflection & CMB: ∃ solutions
- Complicated Lagrangians (unnatural)
- Fine tuning (≈ fit rather than predictive models):
 Possible to predict different lensing and rotation curves
- Discontinuities: can be cured
- In TeVeS [Bekenstein], gravitons & scalar are slower than photons
 ⇒ gravi-Cerenkov radiation suppresses high-energy cosmic rays
 [Moore et al. 2001–05]
 - Solution: Accept slower photons than gravitons
- \exists preferred frame (ether) where vector $U_{\mu} = (1, 0, 0, 0)$ Maybe not too problematic if U_{μ} is dynamical
- Vector contribution to Hamiltonian unbounded by below [Clayton 2001] ⇒ unstable model
- Post-Newtonian tests very constraining

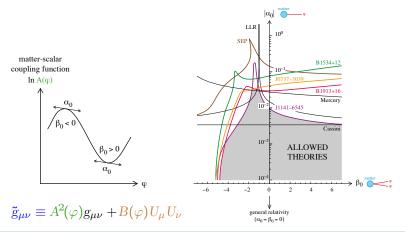
- Solar-system tests \Rightarrow matter *a priori* weakly coupled to φ
- TeVeS tuned to pass them even for strong matter-scalar coupling
- Binary-pulsar tests \Rightarrow matter must be weakly coupled to φ



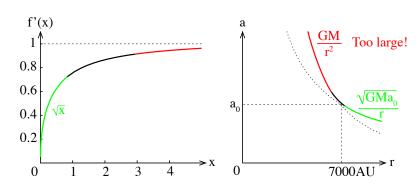
- Solar-system tests \Rightarrow matter *a priori* weakly coupled to φ
- TeVeS *tuned* to pass them even for strong matter-scalar coupling
- Binary-pulsar tests \Rightarrow matter must be weakly coupled to φ



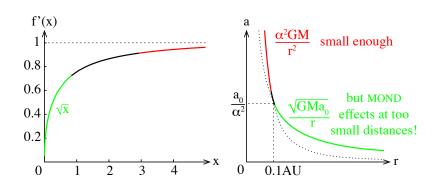
- Solar-system tests \Rightarrow matter a priori weakly coupled to φ
- TeVeS *tuned* to pass them even for strong matter-scalar coupling
- Binary-pulsar tests \Rightarrow matter must be weakly coupled to φ



- Solar-system tests \Rightarrow matter a priori weakly coupled to φ
- TeVeS tuned to pass them even for strong matter-scalar coupling
- Binary-pulsar tests \Rightarrow matter must be weakly coupled to φ

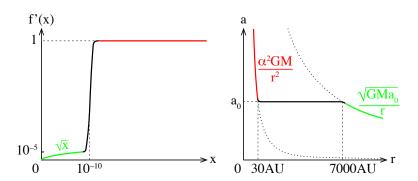


- Solar-system tests \Rightarrow matter *a priori* weakly coupled to φ
- TeVeS *tuned* to pass them even for strong matter-scalar coupling
- Binary-pulsar tests \Rightarrow matter must be weakly coupled to φ



Introduction

- Solar-system tests \Rightarrow matter *a priori* weakly coupled to φ
- TeVeS tuned to pass them even for strong matter-scalar coupling
- Binary-pulsar tests \Rightarrow matter must be weakly coupled to φ



Quite unnatural! (and not far from being experimentally ruled out)

Non-minimal metric coupling

Neither "modified gravity" nor "modified inertia"
$$S = \underbrace{\frac{c^3}{16\pi G} \int d^4x \sqrt{-g^*} \, R^* + S_{\text{matter}}[\text{matter}, g_{\mu\nu} \equiv g_{\mu\nu}^* + f(R_{\mu\nu\rho\sigma}^*, \ldots)]}_{\text{Einstein-Hilbert}}$$
 Metric coupling

- Strictly same spectrum as G.R. in vacuum ⇒ standard Schwarzschild solution (no extra field, no tachyon nor ghost)
- Equivalence principle satisfied
- ∃ vertices coupling matter fields to curvature
 ⇒ extra degrees of freedom confined within matter (no free propagator)
- Same structure as finite-size effects in G.R.

Non-minimal metric coupling

Introduction

Neither "modified gravity" nor "modified inertia" $S = \underbrace{\frac{c^3}{16\pi G} \int d^4x \sqrt{-g^*} \, R^* + S_{\text{matter}}[\text{matter}, g_{\mu\nu} \equiv g_{\mu\nu}^* + f(R_{\mu\nu\rho\sigma}^*, \ldots)]}_{\text{Einstein-Hilbert}}$ Metric coupling

- Strictly same spectrum as G.R. in vacuum ⇒ standard Schwarzschild solution (no extra field, no tachyon nor ghost)
- Equivalence principle satisfied
- ■ vertices coupling matter fields to curvature
 ⇒ extra degrees of freedom confined within matter
 (no free propagator)
- Same structure as finite-size effects in G.R.

Non-minimal metric coupling

Introduction

Neither "modified gravity" nor "modified inertia" $S = \underbrace{\frac{c^3}{16\pi G} \int d^4x \sqrt{-g^*} \, R^* + S_{\text{matter}}[\text{matter}, g_{\mu\nu} \equiv g_{\mu\nu}^* + f(R_{\mu\nu\rho\sigma}^*, \ldots)]}_{\text{Einstein-Hilbert}}$ Metric coupling

- Strictly same spectrum as G.R. in vacuum ⇒ standard Schwarzschild solution (no extra field, no tachyon nor ghost)
- Equivalence principle satisfied
- ∃ vertices coupling matter fields to curvature
 ⇒ extra degrees of freedom confined within matter
 (no free propagator)
- Same structure as finite-size effects in G.R.

Non-minimal metric coupling: problems

But exhibits all generic problems

- ⇒ quite useful toy model to locate hidden assumptions in the literature!
 - Near a spherical body, $R_{\mu\nu\rho\sigma}^*$ and its covariant derivatives give access to M and r independently
 - ⇒ One can reproduce the MOND phenomenology, but also any other potential and any light deflection: not predictive!
 - MOST IMPORTANTLY, although this model does not involve any tachyon nor ghost, it is anyway unstable: Hamiltonian unbounded by below

Non-minimal metric coupling: problems

But exhibits all generic problems

- ⇒ quite useful toy model to locate hidden assumptions in the literature!
 - Near a spherical body, $R_{\mu\nu\rho\sigma}^*$ and its covariant derivatives give access to M and r independently
 - ⇒ One can reproduce the MOND phenomenology, but also any other potential and any light deflection: not predictive!
 - MOST IMPORTANTLY, although this model does not involve any tachyon nor ghost, it is anyway unstable: Hamiltonian unbounded by below

Generic instability of higher-derivative theories

• Consider a "non-degenerate" $\mathcal{L}(q, \dot{q}, \ddot{q})$:

$$p_2 \equiv rac{\partial \mathcal{L}}{\partial \ddot{q}}$$
 invertible $\Rightarrow \ddot{q} = f(q, \dot{q}, p_2)$

Ostrogradski [1850] defines

$$q_1 \equiv q$$
 $p_1 \equiv \frac{\partial \mathcal{L}}{\partial \dot{q}} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \ddot{q}} \right)$ $q_2 \equiv \dot{q}$ $p_2 \equiv \frac{\partial \mathcal{L}}{\partial \ddot{q}}$

• Then $\mathcal{H} = p_1\dot{q}_1 + p_2\dot{q}_2 - \mathcal{L}(q,\dot{q},\ddot{q})$

Generic instability of higher-derivative theories

• Consider a "non-degenerate" $\mathcal{L}(q, \dot{q}, \ddot{q})$:

$$p_2 \equiv \frac{\partial \mathcal{L}}{\partial \ddot{q}}$$
 invertible $\Rightarrow \ddot{q} = f(q, \dot{q}, p_2)$

Ostrogradski [1850] defines

$$q_1 \equiv q$$
 $p_1 \equiv \frac{\partial \mathcal{L}}{\partial \dot{q}} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \ddot{q}} \right)$
 $q_2 \equiv \dot{q}$ $p_2 \equiv \frac{\partial \mathcal{L}}{\partial \ddot{q}}$

• Then $\mathcal{H} = p_1 \dot{q}_1 + p_2 \dot{q}_2 - \mathcal{L}(q, \dot{q}, \ddot{q})$

$$= p_1q_2 + p_2f(q_1, q_2, p_2) - \mathcal{L}(q_1, q_2, f(q_1, q_2, p_2))$$

Generic instability of higher-derivative theories

• Consider a "non-degenerate" $\mathcal{L}(q, \dot{q}, \ddot{q})$:

$$p_2 \equiv \frac{\partial \mathcal{L}}{\partial \ddot{q}}$$
 invertible $\Rightarrow \ddot{q} = f(q, \dot{q}, p_2)$

Ostrogradski [1850] defines

$$q_1 \equiv q$$
 $p_1 \equiv \frac{\partial \mathcal{L}}{\partial \dot{q}} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \ddot{q}} \right)$
 $q_2 \equiv \dot{q}$ $p_2 \equiv \frac{\partial \mathcal{L}}{\partial \ddot{q}}$

• Then $\mathcal{H} = p_1\dot{q}_1 + p_2\dot{q}_2 - \mathcal{L}(q,\dot{q},\ddot{q})$ = $p_1q_2 + p_2f(q_1,q_2,p_2) - \mathcal{L}(q_1,q_2,f(q_1,q_2,p_2))$

Generic instability of higher-derivative theories

• Consider a "non-degenerate" $\mathcal{L}(q, \dot{q}, \ddot{q})$:

$$p_2 \equiv \frac{\partial \mathcal{L}}{\partial \ddot{q}}$$
 invertible $\Rightarrow \ddot{q} = f(q, \dot{q}, p_2)$

Ostrogradski [1850] defines

$$q_1 \equiv q$$
 $p_1 \equiv \frac{\partial \mathcal{L}}{\partial \dot{q}} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \ddot{q}} \right)$
 $q_2 \equiv \dot{q}$ $p_2 \equiv \frac{\partial \mathcal{L}}{\partial \ddot{q}}$

• Then $\mathcal{H} = p_1\dot{q}_1 + p_2\dot{q}_2 - \mathcal{L}(q,\dot{q},\ddot{q})$ = $p_1q_2 + p_2f(q_1,q_2,p_2) - \mathcal{L}(q_1,q_2,f(q_1,q_2,p_2))$

Nonminimal scalar-tensor model

Introduction

Nonminimal metric coupling (unstable within matter)

$$S = \frac{c^3}{16\pi G} \int d^4x \sqrt{-g^*} R^* \quad \text{pure G.R. in vacuum}$$
$$+ S_{\text{matter}} \left[\text{matter} ; g_{\mu\nu} \equiv f(g_{\mu\nu}^*, R_{*\mu\nu\rho}^{\lambda}, \nabla_{\sigma}^* R_{*\mu\nu\rho}^{\lambda}, \dots) \right]$$

Nonminimal scalar-tensor model

$$S = \frac{c^3}{16\pi G} \int d^4x \sqrt{-g^*} \left\{ R^* - 2 g_*^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi \right\}$$
Brans-Dicke in vacuum
$$+ S_{\text{matter}} \left[\text{matter} \; ; \; g_{\mu\nu} \equiv A^2 g_{\mu\nu}^* + B \, \partial_{\mu} \varphi \partial_{\nu} \varphi \right]$$

Avoids Ostrogradskian instability

- because $g_{\mu\nu}$ depends only on φ and $\partial \varphi$
- and because S_{motter} only involves ∂g linearly

Nonminimal scalar-tensor model

Nonminimal metric coupling (unstable within matter)

$$S = \frac{c^3}{16\pi G} \int d^4x \sqrt{-g^*} R^* \quad \text{pure G.R. in vacuum}$$
$$+ S_{\text{matter}} \left[\text{matter} \; ; \; g_{\mu\nu} \equiv f(g_{\mu\nu}^*, R_{*\mu\nu\rho}^{\lambda}, \nabla_{\sigma}^* R_{*\mu\nu\rho}^{\lambda}, \dots) \right]$$

Nonminimal scalar-tensor model

$$S = \frac{c^3}{16\pi G} \int d^4x \sqrt{-g^*} \left\{ R^* - 2 g_*^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi \right\}$$
Brans-Dicke in vacuum
$$+ S_{\text{matter}} \left[\text{matter} ; g_{\mu\nu} \equiv A^2 g_{\mu\nu}^* + B \partial_{\mu} \varphi \partial_{\nu} \varphi \right]$$

Avoids Ostrogradskian instability

- because $g_{\mu\nu}$ depends only on φ and $\partial \varphi$
- and because S_{matter} only involves ∂g linearly

Nonminimal scalar-tensor model

Introduction

Nonminimal metric coupling (unstable within matter)

$$S = \frac{c^3}{16\pi G} \int d^4x \sqrt{-g^*} R^* \quad \text{pure G.R. in vacuum}$$
$$+ S_{\text{matter}} \left[\text{matter} \; ; \; g_{\mu\nu} \equiv f(g_{\mu\nu}^*, R_{*\mu\nu\rho}^{\lambda}, \nabla_{\sigma}^* R_{*\mu\nu\rho}^{\lambda}, \dots) \right]$$

Nonminimal scalar-tensor model

$$S = \frac{c^3}{16\pi G} \int d^4x \sqrt{-g^*} \left\{ R^* - 2 g_*^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi \right\} \frac{\text{Brans-Dicke}}{\text{in vacuum}}$$
$$+ S_{\text{matter}} \left[\text{matter} ; g_{\mu\nu} \equiv A^2 g_{\mu\nu}^* + B \partial_\mu \varphi \partial_\nu \varphi \right]$$

Avoids Ostrogradskian instability

- because $g_{\mu\nu}$ depends only on φ and $\partial \varphi$
- and because S_{matter} only involves ∂g linearly

Nonminimal scalar-tensor model (continued)

Nonminimal scalar-tensor model

$$S = \frac{c^3}{16\pi G} \int d^4x \sqrt{-g^*} \left\{ R^* - 2s \right\}$$
Brans-Dicke in vacuum
+ $S_{\text{matter}} \left[\text{matter} ; g_{\mu\nu} \equiv A^2 g_{\mu\nu}^* + B \partial_{\mu} \varphi \partial_{\nu} \varphi \right]$

$$s \equiv g_*^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi \qquad A(\varphi, \partial \varphi) \equiv e^{\alpha \varphi} - \frac{\varphi X}{\alpha} \ln X$$
$$X \equiv \frac{\sqrt{\alpha a_0}}{c} s^{-1/4} \qquad B(\varphi, \partial \varphi) \equiv -4 \frac{\varphi X}{\alpha} \frac{1}{s}$$

Reproduces MOND while avoiding Ostrogradskian instability

but field equations not always hyperbolic within outer dilute gas!

Nonminimal scalar-tensor model (continued)

Nonminimal scalar-tensor model

$$S = \frac{c^3}{16\pi G} \int d^4x \sqrt{-g^*} \left\{ R^* - 2s \right\}$$
Brans-Dicke in vacuum
+ $S_{\text{matter}} \left[\text{matter} ; g_{\mu\nu} \equiv A^2 g_{\mu\nu}^* + B \partial_{\mu} \varphi \partial_{\nu} \varphi \right]$

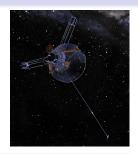
$$s \equiv g_*^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi \qquad A(\varphi, \partial \varphi) \equiv e^{\alpha \varphi} - \frac{\varphi X}{\alpha} \ln X$$
$$X \equiv \frac{\sqrt{\alpha a_0}}{c} s^{-1/4} \qquad B(\varphi, \partial \varphi) \equiv -4 \frac{\varphi X}{\alpha} \frac{1}{s}$$

Reproduces MOND while avoiding Ostrogradskian instability

but field equations not always hyperbolic within outer dilute gas!

Pioneer 10 & 11 anomaly

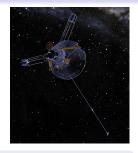
- Extra acceleration $\sim 8.5 \times 10^{-10} \, \mathrm{m.s^{-2}}$ towards the Sun between 30 and 70 AU



$$S = \frac{c^3}{16\pi G} \int d^4x \sqrt{-g^*} \left\{ R^* - 2 g_*^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi \right\} \frac{\text{Brans-Dicke}}{\text{in vacuum}}$$
$$+ S_{\text{matter}} \left[\text{matter} \; ; \; g_{\mu\nu} \equiv e^{2\alpha\varphi} g_{\mu\nu}^* - \lambda \frac{\partial_{\mu} \varphi \partial_{\nu} \varphi}{\varphi^5} \right]$$

Pioneer 10 & 11 anomaly

- Extra acceleration $\sim 8.5 \times 10^{-10} \, \mathrm{m.s^{-2}}$ towards the Sun between 30 and 70 AU
- Simpler problem than galaxy rotation curves $(M_{\rm dark} \propto \sqrt{M_{\rm baryon}})$, because we do not know how this acceleration is related to M_{\odot}
- $\bullet \Rightarrow several$ stable & well-posed solutions

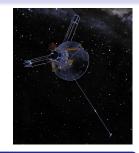


$$S = \frac{c^3}{16\pi G} \int d^4x \sqrt{-g^*} \Big\{ R^* - 2 \, g_*^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi \Big\} \, \frac{\text{Brans-Dicke}}{\text{in vacuum}} \\ + S_{\text{matter}} \Big[\text{matter} \, ; \, g_{\mu\nu} \equiv \, e^{2\alpha\varphi} g_{\mu\nu}^* - \lambda \, \frac{\partial_\mu \varphi \partial_\nu \varphi}{\varphi^5} \Big]$$

Pioneer 10 & 11 anomaly

Introduction

- Extra acceleration $\sim 8.5 \times 10^{-10} \, \text{m.s}^{-2}$ towards the Sun between 30 and 70 AU
- Simpler problem than galaxy rotation curves $(M_{\text{dark}} \propto \sqrt{M_{\text{baryon}}})$, because we do not know how this acceleration is related to M_{\odot}
- ⇒ *several* stable & well-posed solutions



Nonminimal scalar-tensor model

$$S = \frac{c^3}{16\pi G} \int d^4x \sqrt{-g^*} \left\{ R^* - 2 g_*^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi \right\} \frac{\text{Brans-Dicke}}{\text{in vacuum}}$$
$$+ S_{\text{matter}} \left[\text{matter} ; g_{\mu\nu} \equiv e^{2\alpha\varphi} g_{\mu\nu}^* - \lambda \frac{\partial_{\mu} \varphi \partial_{\nu} \varphi}{\varphi^5} \right]$$

- $\alpha^2 < 10^{-5}$ to pass solar-system & binary-pulsar tests
- $\lambda \approx \alpha^3 (10^{-4} \text{m})^2$ to *fit* Pioneer anomaly

A consistent field theory should satisfy different kinds of constraints:

- Mathematical: stability, well-posedness of the Cauchy problem, no discontinuous nor adynamical field
- Experimental: solar-system & binary-pulsar tests, galaxy rotation curves, gravitational lensing by "dark matter" haloes, CMB
- Esthetical: natural model, rather than fine-tuned *fit* of data

Best present candidate: TeVeS [Bekenstein–Sanders], but it has still some mathematical and experimental difficulties

∃ simpler models, useful to exhibit the generic difficulties of all MOND-like field theories

By-product of our study: a consistent class of models for the Pioneer anomaly (but *not* natural!)

Nonlocal models? (Work in progress with Cédric Deffavet & Richard Woodard

A consistent field theory should satisfy different kinds of constraints:

- Mathematical: stability, well-posedness of the Cauchy problem, no discontinuous nor adynamical field
- Experimental: solar-system & binary-pulsar tests, galaxy rotation curves, gravitational lensing by "dark matter" haloes, CMB
- Esthetical: natural model, rather than fine-tuned *fit* of data

Best present candidate: TeVeS [Bekenstein–Sanders], but it has still some mathematical and experimental difficulties

∃ simpler models, useful to exhibit the generic difficulties of all MOND-like field theories

By-product of our study: a consistent class of models for the Pioneer anomaly (but *not* natural!)

Nonlocal models? (Work in progress with Cédric Deffavet & Richard Woodard

A consistent field theory should satisfy different kinds of constraints:

- Mathematical: stability, well-posedness of the Cauchy problem, no discontinuous nor adynamical field
- Experimental: solar-system & binary-pulsar tests, galaxy rotation curves, gravitational lensing by "dark matter" haloes, CMB
- Esthetical: natural model, rather than fine-tuned *fit* of data

Best present candidate: TeVeS [Bekenstein–Sanders], but it has still some mathematical and experimental difficulties

∃ simpler models, useful to exhibit the generic difficulties of all MOND-like field theories

By-product of our study: a consistent class of models for the Pioneer anomaly (but *not* natural!)

Nonlocal models? [Work in progress with Cédric Deffavet & Richard Woodard]

A consistent field theory should satisfy different kinds of constraints:

- Mathematical: stability, well-posedness of the Cauchy problem, no discontinuous nor adynamical field
- Experimental: solar-system & binary-pulsar tests, galaxy rotation curves, gravitational lensing by "dark matter" haloes, CMB
- Esthetical: natural model, rather than fine-tuned *fit* of data

Best present candidate: TeVeS [Bekenstein–Sanders], but it has still some mathematical and experimental difficulties

 \exists simpler models, useful to exhibit the generic difficulties of all MOND-like field theories

By-product of our study: a consistent class of models for the Pioneer anomaly (but *not* natural!)

Nonlocal models? [Work in progress with Cédric Deffayet & Richard Woodard]

A consistent field theory should satisfy different kinds of constraints:

- Mathematical: stability, well-posedness of the Cauchy problem, no discontinuous nor adynamical field
- Experimental: solar-system & binary-pulsar tests, galaxy rotation curves, gravitational lensing by "dark matter" haloes, CMB
- Esthetical: natural model, rather than fine-tuned *fit* of data

Best present candidate: TeVeS [Bekenstein–Sanders], but it has still some mathematical and experimental difficulties

∃ simpler models, useful to exhibit the generic difficulties of all MOND-like field theories

By-product of our study: a consistent class of models for the Pioneer anomaly (but *not* natural!)

Nonlocal models? [Work in progress with Cédric Deffayet & Richard Woodard]