Phenomenology of the NMSSM with Gauge Mediated Supersymmetry Breaking

U. Ellwanger, LPT Orsay with C.-C. Jean-Louis, A.M. Teixeira

## The NMSSM

The supersymmetric Higgsino mass term  $\mu$  in the superpotential W of the MSSM is replaced by the VEV of an additional gauge singlet superfield S:

 $W_{MSSM} = \ldots + \mu H_u H_d \longrightarrow W_{NMSSM} = \ldots + \lambda S H_u H_d + \frac{\kappa}{3} S^3 (+ \ldots)$ 

Soft Susy breaking terms:  $\mu BH_uH_d \rightarrow \lambda A_{\lambda}SH_uH_d + \frac{\kappa}{3}A_{\kappa}S^3 (+...)$ 

 $\rightarrow$  One additional neutral CP-even Higgs + CP-odd Higgs + neutralino from the singlet superfield S

If all Susy breaking terms are of  $O(M_{Susy})$ :  $\langle S \rangle \sim M_{Susy}/\kappa \longrightarrow \mu_{eff} \equiv \lambda \langle S \rangle \sim \frac{\lambda}{\kappa} M_{Susy}$ 

(Recall:  $\mu_{eff} \gtrsim 100$  GeV is necessary in order to satisfy LEP constraints on chargino (= Higgsino/wino) masses;  $\mu_{eff} \lesssim M_{Susy}$  is required for  $\langle H_u \rangle$ ,  $\langle H_d \rangle \neq 0$ )

## Gauge Mediated Supersymmetry Breaking

— No soft Susy breaking terms for the fields of the (N)MSSM at tree level

- Messenger fields  $\phi_i$  with mass  $M_{mess}$  exist, a) whose CP-even and CP-odd scalar masses<sup>2</sup> are split by  $m^2$ ( $\rightarrow$  "supersoft" Susy breaking) b) which carry  $SU(3) \times SU(2) \times U(1)_Y$  gauge quantum numbers (typically:  $\phi_i = 5 + \overline{5}$  under SU(5)) Possible origins of the Susy breaking  $m^2$ :

- Dynamical Susy Breaking (non-perturbative) in a hidden sector containing Susy Yang-Mills + matter (Affleck, Dine, Seiberg, Nelson, Intriligator, Shih,...) + couplings of  $\phi_i$  to the hidden sector
- O'Raifeartaigh models
- Giudice-Masiero terms for  $\phi_i$  in the Kähler potential of No-scale Supergravity (U.E., '95)

### Advantages w.r.t. (m)SUGRA:

- non-perturbative DSB explains  $m \ll M_{Planck}$  via dimensional transmutation (see  $\Lambda_{QCD}$ )
- Susy breaking is always flavour blind (see below)
- conflict between Susy breaking and vacuum stability in stringmotivated Supergravity models easier to solve (?)

Generation of the soft Susy breaking terms for the fields of the (N)MSSM:

1) Since  $\phi_i$  carry  $SU(3) \times SU(2) \times U(1)_Y$  gauge quantum numbers: generation of gaugino masses at one loop:

$$M_{1,2,3} \sim \frac{m^2}{16\pi^2 M_{mess}} \equiv M_{Susy}$$

2) Scalar masses<sup>2</sup> at the two loop level:

$$m_i^2 \sim \left(\frac{m^2}{16\pi^2 M_{mess}}\right)^2 \sim M_{Susy}^2$$

3) That's it; no  $\mu$ - or B-term of the MSSM!

Ways out:

- A) Ignore the problem (most elegant!)
- B) Couplings of  $H_u$ ,  $H_d$  to the hidden sector

C) The NMSSM

BUT: If the soft Susy breaking terms for the singlet  $m_S^2$ ,  $A_{\kappa}$  vanish (at the scale  $M_{mess}$ ):  $\rightarrow \langle S \rangle$  too small

Solution: Allow for couplings  $\eta S \phi_i \phi_i$  of the singlet to the messengers (always allowed!)

 $\rightarrow$  integrating out the messengers generates not only gaugino masses, but also  $m_S^2$ ,  $A_\lambda = \frac{1}{3}A_\kappa$ , ... + possibly terms linear in S in the superpotential  $W \sim \xi_F S$  and in  $V_{soft} \sim \xi_S S$ , so-called "tadpoles". (Tadpole terms always trigger  $\langle S \rangle \neq 0$ )

If allowed, the tadpole parameters  $\xi_F$ ,  $\xi_S$  tend to be somewhat large: Require  $\xi_F \lesssim M_{Susy}^2$ ,  $\xi_S \lesssim M_{Susy}^3$ , but:  $\xi_F \sim \eta \ M_{mess} \ M_{Susy}$ ,  $\xi_S \sim 16\pi^2 \ \eta \ M_{mess} \ M_{Susy}^2$ (typically:  $M_{mess} \gtrsim 10^3 \times M_{Susy}$ )  $\rightarrow$  need  $\eta \lesssim 10^{-5}$ 

Tadpole terms can also be forbidden by discrete symmetries, if the messenger sector is enlarged to  $\phi_1$ ,  $\overline{\phi}_1$ ,  $\phi_2$ ,  $\overline{\phi}_2$  (Giudice, Rattazzi, Delgado, Slavich):

$$W = \eta \ S\overline{\phi}_1\phi_2 + M_{mess}(\overline{\phi}_1\phi_1 + \overline{\phi}_2\phi_2) + \dots$$

The analysis of generalized NMSSM models with general GMSB-like boundary conditions at  $M_{mess}$  will be possible with the help of a Fortran code on the web page

#### www.th.u-psud.fr/nmhdecay/nmssmtools.html

Input:  $M_{mess}$ ,  $M_{Susy}$ , ( $\rightarrow$  gaugino, sparticle masses),  $\tan \beta$  $\lambda$ ,  $A_{\lambda} = \frac{1}{3}A_{\kappa}$ ,  $\xi_F$ ,  $\xi_S$  or  $m_S^2$ ...

**Output:**  $\kappa$ ,  $m_S^2$  or  $\xi_S$ , Higgs- and sparticle spectrum, tests of exp. bounds from LEP, Tevatron, B-physics,  $(g-2)_{\mu}$ .

## RESULTS

1) Scenarios with tadpole terms (the simplest model on the market!): Phenomenologically viable, if  $\lambda \gtrsim 0.5$ , tan  $\beta \lesssim 2$ 

 $\rightarrow$  the NMSSM specific contribution to the scalar Higgs mass matrix pushes the lightest Higgs mass above the LEP bound:



2) Scenarios without tadpole terms (Delgado, Giudice, Slavich):

 $m_s^2$  (< 0),  $A_\kappa$ ,  $A_\lambda$ ,  $m_{H_u}^2$ ,  $m_{H_d}^2$  calculable in terms of  $\eta$  and  $M_{Susy}$ (as before) For  $M_{mess} \sim 10^{13}$  GeV,  $M_{Susy} \sim 1$  TeV:

viable regions (islands) in the parameter space  $\lambda = 0.02...0.5$ ,  $\eta = 0.05...2$ , tan  $\beta = 1.5...10$ 

with

Bino, Winos, Sleptons  $\sim$  450 -1100 GeV Squarks, Gluino  $\sim$  1.8 - 2.4 TeV (!) Additional Higgs states:  $\gtrsim$  450 GeV

 $\rightarrow$  top/stop rad. corrs. push the lightest Higgs mass above the LEP bound (but: hidden fine tuning)

3) Scenarios without tadpole terms and  $A_{\kappa}$ ,  $A_{\lambda} \sim 0$ :

All soft terms for the singlet vanish at  $M_{mess}$  except for  $m_S^2$ (A corresponding hidden sector remains to be constructed)

- $\rightarrow$  the scalar sector of the NMSSM has an R-symmetry (at  $M_{mess}$ ), which is broken by radiative corrections to  $A_{\kappa}$ ,  $A_{\lambda}$  induced by the gaugino mass terms
- $\rightarrow$  at the weak scale: the explicit R-symmetry breaking by  $A_{\lambda}$ ,  $A_{\kappa} \sim$  a few GeV is small (if  $M_{mess}$  is not too large)
- $\rightarrow$  the spontaneous R-symmetry breaking by  $\langle H_u \rangle$ ,  $\langle H_d \rangle$ ,  $\langle S \rangle \neq 0$  generates a pseudo Goldstone Boson, a light CP-odd Higgs scalar  $a_1$
- $\rightarrow$  the lightest Higgs scalar  $h_1$  decays via  $h_1 \rightarrow a_1 a_1$ , escaping LEP constraints if  $m_{h_1} \gtrsim 90$  GeV (depending on  $m_{a_1}$ )



$$\begin{split} \lambda &= 0.6 \\ 10^7 \; {\rm GeV} < M_{mess} < 5 {\cdot} 10^9 \; {\rm GeV}, \\ 200 \; {\rm GeV} < M_{Susy} < 280 \; {\rm GeV}, \end{split}$$

Bino, Winos, Sleptons:  $\sim 100\text{-}200 \text{ GeV}$ Squarks, Gluino:  $\sim 450\text{-}600 \text{ GeV}$   $m_{a_1} \sim 1 - 50 \text{ GeV} < m_{h_1}/2$ Additional Higgs states: > 500 GeV

#### Also possible:

 $\begin{array}{l} \lambda \sim 10^{-2}, \ \mathrm{tan} \, \beta \gtrsim 30, \ M_{Susy} \sim 500 \ \mathrm{GeV}, \\ h_1 \ \mathrm{with} \ m_{h_1} \sim 90 - 100 \ \mathrm{GeV} \ \mathrm{has} \ \mathrm{a} \ \mathrm{large} \ \mathrm{singlet} \ \mathrm{component}, \\ \mathrm{the} \ ``\mathrm{SM''}-\mathrm{like} \ h_2 \ \mathrm{has} \ m_{h_2} \sim 120 \ \mathrm{GeV} \\ m_{a_1} \sim 1 \ \mathrm{GeV}, \ \mathrm{but} \ \mathrm{decoupled} \ (\mathrm{since} \ \lambda \ \mathrm{is} \ \mathrm{small}) \\ \rightarrow \ \mathrm{Bino}, \ \mathrm{Winos}, \ \mathrm{Sleptons} \sim 200\text{-}400 \ \mathrm{GeV} \\ \ \mathrm{Squarks}, \ \mathrm{Gluino} \sim 850\text{-}1100 \ \mathrm{GeV} \\ \mathrm{Additional} \ \mathrm{Higgs} \ \mathrm{states} \sim 600 \ \mathrm{GeV} \end{array}$ 

# Summary

The NMSSM allows to solve the  $\mu$ -problem of GMSB models in a phenomenologically viable way, provided *S* couples to the messenger sector which induces soft Susy breaking terms for *S*.

Depending on the messenger sector, different scenarios can be realized implying different phenomenologies in the Higgs and sparticle sectors. Possible are amongst others

- light CP-odd scalars (pseudo-Goldstone Bosons),
- light CP-even scalars with large singlet component.