
Experiences with http/WebDAV protocols for data access in high throughput computing

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2011 J. Phys.: Conf. Ser. 331 072003

(http://iopscience.iop.org/1742-6596/331/7/072003)

Download details:

IP Address: 128.141.224.105

The article was downloaded on 17/10/2012 at 08:23

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/331/7
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

Experiences with http/WebDAV protocols for data access in
high throughput computing

Gerard Bernabeu1,2, Francisco Martinez1,2, Esther Acción1,2, Arnau Bria1,3, Marc
Caubet1,2, Manuel Delfino1,4, Xavier Espinal1,3

1 Port d'Informació Científica (PIC), Universitat Autònoma de Barcelona, Edifici D,
ES-08193 Bellaterra (Barcelona) Spain

E-mail: bernabeu@pic.es

Abstract. In the past, access to remote storage was considered to be at least one order of
magnitude slower than local disk access. Improvement on network technologies provide the
alternative of using remote disk. For those accesses one can today reach levels of throughput
similar or exceeding those of local disks. Common choices as access protocols in the WLCG
collaboration are RFIO, [GSI]DCAP, GRIDFTP, XROOTD and NFS. HTTP protocol shows a
promising alternative as it is a simple, lightweight protocol. It also enables the use of standard
technologies such as http caching or load balancing which can be used to improve service
resilience and scalability or to boost performance for some use cases seen in HEP such as the
"hot files". WebDAV extensions allow writing data, giving it enough functionality to work as a
remote access protocol. This paper will show our experiences with the WebDAV door for
dCache, in terms of functionality and performance, applied to some of the HEP work flows in
the LHC Tier1 at PIC.

1. Remote Storage Access and Worldwide LHC Computing Grid
Most of the experiments using the Worldwide LHC Computing Grid (WLCG) require access to one or
many remote storage systems. In order to improve efficiency when using remote storage resources via
IP networks many protocols have been implemented, adapted or just adopted.

In the WLCG community it is common to find a wide range of file-based protocols to remotely
access network attached storage, composed by a mixture of proprietary/non-standard protocols (GPFS,
LUSTRE, Hadoop), protocols developed specifically by the community (XROOTD, RFIO,
[GSI]DCAP), protocols adapted to fit in the GRID (gridFTP) and standard protocols (NFS); each one
with its advantages as well as caveats and restrictions.

The remote storage clustered file systems available in the WLCG are diverse and not all protocols
are available at each system/site. At the moment it is not trivial to choose a single protocol which is a

1xcxcz
2Also at Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
3Also at Institut de Física d'Altes Energies, IFAE, Edifici Cn, Universitat Autònoma de Barcelona, ES-08193
Bellaterra (Barcelona), Spain
4Also at Universitat Autònoma de Barcelona, Department of Physics, ES-08193 Bellaterra (Barcelona), Spain

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072003 doi:10.1088/1742-6596/331/7/072003

Published under licence by IOP Publishing Ltd 1

perfect fit for all use cases required by the different experiments and sites. This drives the sites
contributing in the WLCG to the need of supporting several protocols and, at the same time, forces the
experiments to be flexible to the protocols available at each site.

2. Remote Storage Access Protocols
In order to efficiently use a clustered file system on top of a Network Attached Storage (NAS) a file-
based protocol which can solve both high and low throughput transfers under random and sequential
data access patterns is needed.

At Port d'Informació Científica (PIC), the Spanish WLCG Tier-1 data center, all data stored under
dCache1 is available through several data access protocols: dCap, gsidCap, gridFTP, XRootd, and
HTTP. At PIC the WLCG jobs mainly use dCap to read files from dCache to the Worker Nodes in
high throughput bulk data transfers, using commands like dccp, or in a “read as need” stream-like data
access pattern using low throughput data transfers for both random and sequential access. Job data
outputs are usually written back to dCache using the gridFTP protocol with high throughput transfers.
Whereas this data access model is well understood for most job classes of the WLCG experiments, it
is not rare to find inefficiencies and bottlenecks when reading the job input data.

Getting all requirements and wishes implemented in a remote storage access protocol is almost
impossible but, focusing in the experience acquired as a WLCG Tier-1 that also serves other
experiments with a common system (dCache), it is possible to make a list of what a data access
protocol should provide in order to provide fast and reliable WAN transfers and maximize local jobs
data access efficiency:

• lightweight control protocol
• client caching capabilities
• fast and reliable data transfer mechanism
• random data access capabilities
• portable interface, easy to use (POSIX)
• standardized and fully described protocol

2.1. NFSv4.1
Network File System (NFS) version 4.1 is the first minor version of NFSv42 and extends it by adding
support for parallel NFS (pNFS), sessions and directory delegations. What is more interesting for the
scientific computing use case about NFSv4.1 is pNFS; it allows to separate the data and meta data
paths of the file system, providing the necessary capabilities for a real distributed cluster file system.

NFSv4.1 is probably the most solid candidate as a standard distributed storage access protocol: it is
an industry standard supported by many vendors3, offers a POSIX interface, random access
capabilities, fast and reliable data transfer over the TCP/IP protocol stack, default Linux kernel client
caching is provided by the Linux client implementation and, thanks to the compound RPC calls,
NFSv4.1 provides a better control protocol than its predecessors.

The NFSv4.1 protocol implementation has already shown good performance in the first early tests
shown4 to the WLCG community and it has been included in dCache's supported protocol list5.

On the other hand, NFSv4.1 is still (November 2010) in experimental stage, so it requires an
experimental kernel in the client and has limited functionality from the dCache (1.9.10) server side
too. Although it is possible to efficiently transfer data using NFSv4.1 over the WAN, the protocol has
not been designed for this purpose and the minimum required components to do it are not yet
(November 2010) available at the dCache server; dCache NFSv4.1 server development is focused on
exporting data.

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072003 doi:10.1088/1742-6596/331/7/072003

2

file:///home/gerard/Documentos/Papers/CHEP2010/
file:///home/gerard/Documentos/Papers/CHEP2010/
file:///home/gerard/Documentos/Papers/CHEP2010/
file:///home/gerard/Documentos/Papers/CHEP2010/
file:///home/gerard/Documentos/Papers/CHEP2010/

2.2. HTTP/WebDav
Web-based Distributed Authoring and Versioning (WebDAV6) is a standardized7 extension of the
Hypertext Transfer Protocol (HTTP) protocol adding support to common file operations like file
browsing, writing and name space management with support for operations like rename, move and
delete files. WebDAV extends HTTP so that it provides most of the capabilities of a regular POSIX
file-based protocol while keeping the high data transfer efficiency.

2.2.1. Access HTTP/WebDav.
A HTTP/WebDav share can be accessed in several ways. GNOME, KDE, MS Windows and MAC
OS X natively implement a client which can connect to a WebDav server to access and modify
remotely stored files. It is possible to access the whole file or just a few random bytes of it.

Most common standard web browsers also support connecting to a WebDav server, even using
X.509 certificates for authentication. Traditional HTTP CLI based clients like wget or curl can also
access WebDav as any other HTTP URL, making it easier to do high throughput bulk data transfers.
The ROOT Data Analysis Framework can use WebDav shares as standard HTTP data sources too.

Under Linux it is possible to access a WebDav server as a mounted POSIX file system using FUSE
based user space file system drivers like fusedav8 or davfs29, both having built-in client caching.

2.2.2. dCache as HTTP/WebDav server.
After stability and performance, one of the most recurrent requirements from experiments is to ease
the data access, in which dCache helps by providing standardized data access protocols like
HTTP/WebDav and NFSv4.1 while keeping files accessible by the more HEP centric protocols like
[gsi]dCap, gridFTP or Xrootd, currently in use by the production of the WLCG Tier-1 project. All data
stored under dCache can also be managed using the SRMv2.2 protocol and is immutable; it is not
possible to open dCache stored files in both read and write modes (RW) at the same time.

In order to provide performance under HTTP/WebDav dCache uses redirect calls for reads, so that
the data server (also known as dCache pool) is the source of the data transfer, avoiding bottlenecks.
Since some clients, or restricted network setups, might not work with the redirections dCache provides
a way to disable them via the dCache configuration file (dcache.conf): webdav.redirect.on-read=false.
When redirections are disabled all data transfers flow through the HTTP/WebDav dCache door, which
might become a bottleneck.

The latest ROOT client available (20091028-1003) is unable to directly use the dCache 1.9.10-1
WebDav server. It is due to a dCache bug which will be solved in future dCache releases.

3. Performance Comparison On Remote Storage Access Protocols
Performance tests focused in bulk data transfers have been performed in order to determine the
suitability of some of the protocols that dCache offers. The comparison wants to emulate high
throughput bulk data transfers like the ones observed in production jobs from several WLCG
experiments; it focuses on unauthenticated protocols for LAN data read access.

3.1.1. Test bed description.
The testbed infrastructure emulates an standard grid site, in order to avoid disk access bottlenecks all
the transfers are memory to memory; source file is cached in the server RAM and destination file is
/dev/null.

As described on figure 1 the dCache 1.9.10-1 service is composed by one dCache door dealing with
the control part of the transfers and offering several protocols (gsiFTP, [gsi]dCap, XRootd,
HTTP/WebDav), one dCache pool (2*10GE NIC, 48GB of RAM) serving the data and the dCache
server where all other dCache required services are running (Chimera name server, PoolManager,
SRM, InfoServer, etc). On the client side a default SLC5.3 x86_64 Worker Node has been taken from

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072003 doi:10.1088/1742-6596/331/7/072003

3

file:///home/gerard/Documentos/Papers/CHEP2010/
file:///home/gerard/Documentos/Papers/CHEP2010/
file:///home/gerard/Documentos/Papers/CHEP2010/
file:///home/gerard/Documentos/Papers/CHEP2010/

the computing farm and dedicated to the tests. The Worker Node server has 1GE NIC, two
X5355CPUs, 16 GB of RAM and runs the following tests:

• HTTP/WebDav using wget-1.11.4-2: wget -q -O /dev/null $dCacheHTTPurl
• Xroot using xrootd-20091028-1003: xrdcp -s -f $dCacheROOTurl /dev/null
• dCap using dcap-2.47.2-0 : dccp $dCacheDCAPurl /dev/null
• Tuned dCap using dcap-2.47.2-0 with 10MB transfer buffer size: dccp -B 10000000

$dCacheDCAPurl /dev/null

3.1.2. Big file.
An ATLAS standard ROOT file of 1496615973 bytes (1427MB) file has been selected for the big file
protocol comparison tests, figure 2 shows the required transfer time (lower is better) for 100 runs.
Since untuned dCap results are significantly worse than all the other protocols, only the tunned dCap
results are taken. The average data transfer and CPU usage time per protocol are:

• wget: average 12453ms (114.6MB/s), 1797ms CPU
• xrdcp: average 12382ms (115.2MB/s), 2914ms CPU
• dcap -B10M: average 14481ms real (98.5MB/s), 1970 CPU

From the tested protocols/commands, the fastest is XRootd/xrdcp shortly followed by HTTP/wget
which required 0,57% more time while having lower CPU usage., tunned dCap/dccp is 16% slower
than HTTP/wget. It is worth to mention that there was no client/server error in any of the tests.

Figure 1. dCache protocol
comparison testbed infrastructure

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072003 doi:10.1088/1742-6596/331/7/072003

4

3.1.3. Small file.
An ATLAS standard ROOT file of 2128456 bytes (2MB) file has been selected for the small file
protocol comparison tests. figure 4 shows the required transfer time (lower is better) for 100 runs. In
this case dCap tunning makes no difference but for consistency with 3.1.2 tunned dCap results are
shown. The average data transfer and CPU usage time per protocol are:

• wget: average 147ms (11.47MB/s), 6.9ms CPU
• xrdcp: average 176ms (9.85MB/s), 20.2ms CPU
• dcap -B10M: average 227ms (10.85MB/s), 13.8 CPU

From the tested protocols/commands, the fastest is HTTP/wget followed by a 19% slower
Xrootd/xrdcp that needed 3 times more CPU, tunned dCap/dccp is 54% slower than HTTP/wget. It is
worth to mention that there was no client/server error in any of the tests.

Figure 3. per protocol CPU time required for
1.4GB file read

1
3
5
7

9
11
13

15
17

19
21

23
25
27

29
31

33
35
37

39
41

43
45
47

49
51

53
55
57

59
61

63
65
67

69
71

73
75
77

79
81

83
85
87

89
91
93

95
97

99

0

500

1000

1500

2000

2500

3000

3500

4000

CPU time

Test #

m
ill

is
e

co
n

d

Figure 2. per protocol real time required for
1.4GB file read

1 7 13
4 10 16

19
22

25
28

31
34

37
40

43
46

49
52

55
58

61
64

67
70

73
76

79
82

85
88

91
94

97
100

10000

11000

12000

13000

14000

15000

16000

17000

18000

19000

20000

Real time

Test #

m
ill

is
ec

on
d

wget
xrdcp
dccp -B10M

Figure 4. per protocol real time required for 2MB
file read

1
3

5
7

9
11

13
15

17
19

21
23

25
27

29
31

33
35

37
39

41
43

45
47

49
51

53
55

57
59

61
63

65
67

69
71

73
75

77
79

81
83

85
87

89
91

93
95

97
99

0

50

100

150

200

250

300

350

400

450

500

Real time

Test #

m
ill

is
e

co
n

d

Figure 5. per protocol CPU time required for
1.4GB file read

1
3

5
7

9
11

13
15

17
19

21
23

25
27

29
31

33
35

37
39

41
43

45
47

49
51

53
55

57
59

61
63

65
67

69
71

73
75

77
79

81
83

85
87

89
91

93
95

97
99

0

5

10

15

20

25

30

CPU time

Test #

m
ill

is
e

co
n

d

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072003 doi:10.1088/1742-6596/331/7/072003

5

4. Conclusions
This work shows that HTTP/wget is a lightweight, fast and reliable bulk file transfer solution for both
big and small files which can be used to simplify and improve data access efficiency in high
throughput computing.

While NFSv4.1 is not yet in production, HTTP is a well known and widely adopted standard
protocol that can be used by many clients and it is now available for those sites using recent dCache
versions as their storage system, or for sites that want a standard proxied access to distributed storage.
More efforts on dCache are required to use dCache's HTTP/WebDav server as a mounted file system,
but NFSv4.1 might be a better choice for this.

Acknowledgments
The Port d’Informació Científica (PIC) is maintained through a collaboration between the Generalitat
de Catalunya, CIEMAT, IFAE and the Universitat Autònoma de Barcelona. This work was supported
in part by grant FPA2007-66152-C02-00 from the Ministerio de Educación y Ciencia, Spain.

References
[1] http://www.dcache.org
[2] Network File System (NFS) version 4 Protocol

http://www.ietf.org/rfc/rfc3530.txt?number=3530
[3] Servers under development at NetApp ONTAP OS, Panasas, EMC Celerra, Oracle. Clients

under development at least for Linux, Windows and OpenSolaris.
http://www.pnfs.com/

[4] http://www.dcache.org/manuals/20100419-hepix-dcache.pdf
[5] dCache going standard - The NFS v4.1 dCache implementation.

http://www.dcache.org/articles/i,article-20100401001.html
[6] http://www.webdav.org/
[7] http://tools.ietf.org/html/rfc4918
[8] http://0pointer.de/lennart/projects/fusedav/
[9] http://savannah.nongnu.org/projects/davfs2

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072003 doi:10.1088/1742-6596/331/7/072003

6

