

ORSAY

Recent results from HADES and projections for PANDA

Baryon electromagnetic structure studies in the Time-Like region with HADES and PANDA.

B. Ramstein, IPN Orsay

Outline

Introduction:

- General context of HADES experiments
- In-medium modifications of vector mesons
- Interest of elementary reactions Sensitivity to electromagnetic Time-Like form factors

Results from pp and dp reactions with HADES and a glance at heavy-ion results

Perspectives with the GSI pion beam

Time-Like nucleon Form factor measurements with PANDA

Conclusions

Motivations of the HADES experiment

In-medium vector meson modifications:

see e.g. Leupold ,Metag,Mosel Int. J. of Mod. Phys. E19 (2010) 147 for a recent review

 $\Delta(1232$

Chiral Symetry Restoration

→ Modifications of hadron masses ? Brown-Rho PRL66(1991) 2720 Hatsuda and Lee PRC46 (1992) 34

Brown-Rho scaling $m_v^* = m_v(1 - 0.2\rho/\rho_0)$

Link to chiral symetry restoration Connexion of vector meson spectral function to quark condensates via QCD sum rules

ρ

Rapp and Wambach EPJA 6 (1999) 415 Rapp, Chanfray and Wambach NPA 617, (1997) 472 In-medium spectral function depends on ρ NN* coupling

N-1

The ρ meson in hot and dense hadronic matter from SIS18 to SPS

Relation to electromagnetic structure of baryons

 $q^2=M^2_{inv}(e^+e^-)=M^2_{\gamma^*}>0$ $q^2 \ge 0$: « Time like « region electromagnetic form factors are unknown !

Baryonic transition electromagnetic form factors in space-Like region

B. Ramstein

Models for N- $\!\Delta$ magnetic transition form factor in Time-Like region

Hades « strategy »

 Study dilepton emission in dense and hot matter (cf. DLS/Berkeley) A+A reactions in the 1-2 AGeV energy range C+C, Ar+KCI, Au+Au (2012), Ag+Ag(2013?)

 cold matter at normal nuclear density p+Nb 3.5 GeV (cf KEK, Jlab, CBELSA/TAPS)

 \checkmark Elementary collisions pp, dp and (in future) π -p

- reference to heavy-ion spectra
- understand dilepton production mechanism (exclusive channels)
- dilepton emission is probing time-like electromagnetic structure of hadronic transitions!

✓ Simultaneous measurements of hadronic channels (pp →NN π , pp →NN $\pi\pi$) Cross-checks on known channels, detailed information on baryonic resonance production

 \checkmark strangeness measurement program: K⁻, K⁰, ϕ , Σ (1385), Λ (1405)

The Collaboration

Tofino

B. Ramstein

TO

bmb+f - Förderschwerpunkt

Großgeräte der physikalischen

> Catania (INFN - LNS), Italy

Cracow (Univ.), Poland

Coimbra (Univ.), LIP, Portugal

>Darmstadt (GSI), Germany

HADES

Grundlagenforschung

Dresden (FZD), Germany >Dubna (JINR), Russia Frankfurt (Univ.), Germany Giessen (Univ.), Germany Milano (INFN, Univ.), Italy >München (TUM), Germany Moscow (ITEP, MEPhI, RAS), Russia ➢Nicosia (Univ.), Cyprus >Orsay (IPN), France ≻Rez (CAS, NPI), Czech Rep. Sant. de Compostela (Univ.), Spain Valencia (Univ.), Spain

Acceptance: Full azimuth, polar angles $18^{\circ} - 85^{\circ}$ Pair acceptance ≈ 0.35

Particle identification:

RICH, Time Of Elight, Pro Shower (nod
Upgrade (2010)
✓ New DAQ ~20 kHzTrigger:
1st Level: ch✓ new MDCs for plane 1
✓ RPC θ <45°</th>Ok kHz2nd Level: single electron trigger (~2.5 kHz)

Momentum measurement

Magnet: $\int BdI = 0.1$ - 0.34 Tm MDC: 24 Mini Drift Chambers Leptons: $\Delta x \sim 140 \mu$ per cell, $\Delta p/p \sim 1$ -2 % $\Delta M/M \sim 2\%$ at ω peak

HADES 2nd generation dilepton spectrometer

IPN contribution

French group:

G. Roche (Clermont-Ferrand) **IPN Orsay:** Jean-Louis Boyard (retired 2008) Jean-Claude Jourdain (retired 2001) Thierry Hennino Malgorzata Gumberidze (post-doc) Hubert Kuc (PhD 2010-2013) Tingting Liu (PhD 2010) Emilie Morinière (PhD 2008) Béatrice Ramstein Michèle Roy-Stephan (retired 2006)

...+Jacques Van de Wiele (phenomenology)

R&D détecteurs, B. Genolini, M. Imre, J.P. Le Normand, A. Maroni, T. Nguyen Trung, J. Pouthas, V. Poux, P. Rosier C. Théneau,

> 4th plane of 6 drift chambers drift cell (14x10 mm²) active area 3.5 m²

Analysis steps : one example

Forward Wall (np selection):

- 1. Mult > 0
- 2. search for particle with 1.6 GeV < p < 2.6 GeV

<u>(e+,e⁻) pair cuts</u>:

- 1. track and ring quality
- 2. identification
- 3. background rejection cuts
- 4. opening angle > 9°.

Combinatorial background: like sign pairs

efficiency corrections:

normalisation by elastic scattering measurement (syst.error ~ 11 %)

HADES measurements in pp E=1.25 GeV, 2.2 GeV ,3.5 GeV

Exclusive meson production in hadronic channels

Inclusive dilepton production

Resonance model results: π° Dalitz Δ Dalitz + effect of lachello FF below η threshold
only 2 dilepton sources

□ π° Dalitz decay $\sigma_{\pi^{\circ}}$ =4.5 mb branching ratio $\pi^{\circ} \rightarrow \gamma e^{+}e^{-}$ 1.2 %

□ Δ Dalitz decay : branching ratio $\Delta \rightarrow \text{Ne}^+\text{e}^-$ (QED :4.2 10⁻⁵)

non resonant contribution expected to be small

Time-like N- Δ transition electromagnetic

form factors

Wan and Iachello Int. J Mod. Phys. A20 (2005) 1846 G. Ramalho and T. *Pena arxiv:* 1205.2575v1 (2012)

Exclusive analysis : pp→ppe+e- at 1.25 GeV using pe+e- events

isospin effects in dilepton production ?
→ Comparison of pp and quasi-free pn reactions (from dp experiments)

Non-resonant contributions in NN→NNe⁺e⁻

 $pp \rightarrow e^+e^-X E=2.2 GeV, 3.5 GeV$

Comparison to cocktail of dilepton sources •Direct production of ρ/ω •Dalitz decay of Δ resonance (point-like)

Effect of electromagnetic form factors / Coupling of ρ to baryonic resonances ?

Exclusive pp→ppe⁺e⁻ channel at 3.5 GeV

Cross sections and angular distributions for baryonic resonances from hadronic channel analysis

✓ Direct production of ρ , η , ω with cross sections from hadronic analysis

(of $\eta/\omega \rightarrow \pi + \pi^{-}\pi^{0}$) and $\sigma_{\rho} = 1/2\sigma_{\omega}$ \checkmark Constant form factors (taken at q²=0) *M. Zetenyi and G. Wolf Heavy Ion Phys.* 17 (2003) 27

Additional information from exclusive channels Missing yield related to light baryonic resonances (N(1520) ,..)

Transport model calculations for inclusive e⁺e⁻ production in pp

J.Weil, H. van Hees and U. Mosel, EPJA 48, 111 (2012)

Towards a consistent description of dilepton production in all systems

Perspectives of pion beam experiments

Clermont-Ferrand, 25/01/2013

B. Ramstein

23

Future HADES experiments with the GSI pion beam

pion momentum 0.6 < p <1.5 GeV/c $I \sim 10^{6}/s$

24

Motivations of πN experiments with HADES: Dilepton channels

- well-known production mechanism
- fixed resonance mass M_R=sqrt(s)
- exclusive $\pi p \rightarrow n e^+e^-$ channels (η contribution can be rejected)

Predictions for $\pi^{-}p \rightarrow e^{+}e^{-}n$ below ω threshold

Calculations based on **hadronic couplings** M. Lutz, B. Friman, M. Soyeur, NPA 713 (2003) 9 Titov and Kämpfer EPJA 12 (2001) 217

Important interference effects expected between I=0 (ω) and I=1 (ρ) channels

Very new calculation based on VDM transition form factors by Zetenyi and Wolf arXiv:1208.567.v1 [nucl-th]

Feasibility study : H. Kuc's PhD Orsay/Cracow

Simulation of $\pi^{-}p \rightarrow e^{+}e^{-}X$ Selection of $\pi^{-}p \rightarrow e^{+}e^{-}n$ By missing mass

Access to unexplored Time-Like electromagnetic structure of baryonic transitions/ off-shell ρ production

$\pi N \rightarrow \pi \pi N$: present status

All what we know about N* couplings to ρ N, $\Delta \pi$, σ N is due to *Manley, Arndt, Goradia, Teplitz PRD 30* (1984) 904. based on the analysis of 240000 events (bubble chamber < 1980)

✓ Complete existing very precise photoproduction data
 ✓ Improve knowledge of baryonic resonances, M_R, Γ(N*→Nπ), Γ(N*→Nππ)
 ✓ Dynamical models are now available → a new combined PWA analysis of all pion and photoproduction channels will be possible.

✓ Important for baryonic structure issues (Constituent Quark Models, Lattice QCD)

27

Some open issues for $\pi N \rightarrow \pi \pi N$ and $\pi N \rightarrow \pi N$ measurements

N(1520) D_{13} state

Manley et al. strong N(1520) \rightarrow 2 π BR(ρ N)~20%

- ✓ Important coupled channel effects ✓ With BR(ρ N)~20%, cross sections are not reproduced
- ✓ need for differential cross sections
- ✓ Important for medium effects

28

N(1440) P₁₁

Branching ratios to $\pi\Delta\,$ and $(\pi\,\pi)_{\rm s}$ N need to be checked

N(1710) P₁₁

- ✓ Existence contradictory
- ✓ Not seen in the latest PWA analysis
- ✓ BR(2π) =40 to 90 % (PDG 2010)

Time-Like nucleon Form Factors at PANDA

... and other electromagnetic channels

IPN Orsay: T. Hennino, R.Kunne, D. Marchand, S. Ong, B. Ramstein, E. Tomasi-Gustafsson (CEA/IRFU), J. Van de Wiele A. Dbeyssi (PhD), B. Ma (PhD) + post-doc (2013) + service R&D detecteurs

Collaboration with H. Fonvieille (Clermont-Ferrand)

The FAIR facility

Facility for Antiproton and I on Research

- Hadron Structure and Dynamics
- Nuclear and quark matter
- Super-heavy elements
- Nuclear Structure and Astrophysics
- Atomic, Plasma and Material Physics
- Radiobiology

Clermont-Ferrand, 25/01/2013

 $\begin{array}{l} \mbox{Antiproton ring} \\ \mbox{High Energy Storage} \\ \mbox{Ring 1.5} - 15 \ \mbox{GeV/c} \\ \mbox{L} = 2 \ x \ 10^{32} \ \mbox{cm}^{-2} \ \mbox{s}^{-1} \\ \mbox{\sigma}_p/p = 10^{-4} \\ \mbox{2x10}^7 \ \mbox{int.s}^{-1} \end{array}$

✓ Meson spectroscopy

 D mesons, charmonium
 ✓ Glueballs, hybrids,...

 Charmed and multi-strange

 baryon spectroscopy
 ✓ hypernuclei (S=2)
 ✓ Hadrons in nuclear matter

✓ Proton structure

B. Ramstein

PANDA Barrel EMC

- IPN Orsay: Mechanical structure design and cooling
- ✓ Prototype of 60 crystals already tested
- ✓ Proto120 (120 crystals) to be tested in 2013

(cosmics, γ beams at MAMI)

Time-Like and Space-Like electromagnetic form factors

✓ Much less data in Time-Like region

- ✓ Form factors in both regions are linked (dispersion relations)
- ✓ Values should be the same at high q² (analyticity) and should follow pQCD behaviour $|G_{E,M}(q^2)| \sim (q^2)^{-2}$

Time-Like Form Factor measurement with PANDA : precision estimates

Feasibility study at IPNO: M. Sudol et al. EPJA 44 (2010) 373

PANDA will bring Precise determination of $|G_E|$ and $|G_M|$ up to 14 (GeV/c)² G_{eff} up to 30 (GeV/c)² : transition towards perturbative QCD

Feasibility studies for form factor in the unphysical region ($q^2 < 4m_p^2$) \checkmark in $\bar{p}p \rightarrow e^+e^-\pi^0$ (J. Boucher, PhD 2011) \checkmark In $\bar{p}d \rightarrow ne^+e^-$ (H. Fonvieille and V.A. Karmanov EPJA42 (2009) 287-298)

Conclusion:

Elementary reaction program

- reference for medium effects
- Time-like electromagnetic structure of baryonic resonances/coupling to vector mesons

connection with PANDA !

perspectives of pion beam experiments (\rightarrow oct. 2013)

- Dilepton channels in $\pi N \rightarrow$ unique chance to study Time-Like electromagnetic structure of higher lying resonances (complementary to pion electroproduction)
- One pion, Two pion and kaon production:new data highly needed for Partial wave Analysis → baryonic resonance properties

GSI pion beam is unique in world at present to provide the missing data

Before HADES moves to FAIR ... and IPN HADES team moves to PANDA