Galactic Cosmic-Rays (GCR) with AMS-02: pheno/data analysis

dmaurin@lpsc.in2p3.fr, derome@lpsc.in2p3.fr

11/10/2012

CR propagation: neutral and charged particles (I)

Dark Matter

Halo

 $\sim 300 \text{ kpc}$

- Cosmic-Ray (CR) origin
- CR transport
- Dark Matter (DM) searches

CR propagation: neutral and charged particles (II)

Neutral particles:

CLUMPY

http://lpsc.in2p3.fr/clumpy/

- propagate in straight line
- absorption ~ negligible at GeV-TeV in the Galaxy
- => line-of-sight integration on $\Delta\Omega$: skymaps + spectra

 $\Delta\Omega$

Dark Matter
Halo
~ 300 kpc

CR propagation: neutral and charged particles (III)

CR propagation: neutral and charged particles (IV)

=> background for DM detection: p (CR) + H (ISM) \rightarrow pbar, e+, γ ... (same transport for DM or astrophysically-induced species)

AMS-02 on ISS: 19th of May 2011

TRD Electrons

Silicon Tracker Mass, Charge, Energy

ECAL Electrons, Gamma-rays

Particles are identified by their mass, charge and energy.

TOF Mass, Charge, Energy

Magnet
Mass, ± Charge, Energy

RICH Mass, Charge, Energy

AMS-02 data flow

Ku-Band High Rate (down): Events <10Mbit/s>

TDRS Satellites

S-Band Low Rate (up & down): Commanding: 1 Kbit/s Monitoring: 30 Kbit/s

AMS Payload Operations Control and Science Operations Centers (POCC, SOC) at CERN

AMS Computers at MSFC, AL

White Sands Ground Terminal, NM

AMS analysis: ongoing and future activities at LPSC

- RICH detector characterisation

- Aerogel index mapping using cosmic particles

- Flux reconstruction

- Geomagnetic cutoff
- South-Atlantic Anomaly exclusion
- Exposure time calculation

- AMS-γ

- Flux and γ map reconstruction

- Positron fraction

- Solar modulation and geomagnetic cutoff effect

- Nuclear and isotopic fluxes/ratios

- Charge reconstruction in the detector (RICH)
- Fragmentation in the detector
- Isotope identification with the geomagnetic field

AMS-02: new challenges

Exp.	#events/day	flight dates	Total #events
N _{HEAO-3}	$\sim 2.6 \ 10^4 \ / day$	[10/79-06/80]	$=> 7 \cdot 10^6 \text{ events } (4 < Z < 30)$
N _{PAMELA}	$\sim 2.2 \ 10^6 \ /day$	[07/06]	$=> 5 \ 10^9 \text{ events } (Z < 6)$
N _{AMS-02}	$\sim 4.6 \ 10^7 \ / day$	[04/11]	$=> 2.4 \ 10^{10} \text{ events (all Z)}$

=> Huge increase of statistics accumulated since the discovery of CRs one century ago!

Galactic Cosmic-Ray composition

- => AMS-02 able to measure all these species (but v)!
 - **Objectives:**
- p, d, and γ for dark matter searches (rare production)
- (²H, ³He, LiBeB, sub-Fe) + ¹⁰Be/Be, Be/B...to calibrate CR transport

Objectives: data analysis and propagation

- LPSC team past/present efforts:

1. Experimental activity

- detector calibration (for RICH)
- data analysis (e⁺, γ, nuclei)

2. Tools development for DM/propagation studies

- CLUMPY: DM decay/annihilation in γ-rays
- USINE: charge particles propagation (still in progress)
- GreAT: statistical tools MCMC for USINE (thèse A. Putze)

2. CR phenomenology

- B/C + radioactive nuclei (thèse A. Putze), light nuclei (thèse B. Coste)
- DM constraints (pbar, dbar, γ-rays)

- LPSC team/post-doc objectives:

- element and isotope fluxes/ratios (+ fragmentation), AMS-02 potential with γ -rays
- better CR propagation models ('numerical' USINE), better ingredients
- => Combines all CR measurements from AMS-02 to obtain best constraints (standard physics and DM indirect detection)

Post-doc profile:

- strong background in data analysis
- strong background in GCR physics

Such a profile exists!

[one outstanding candidate - PhD in 2009]

Strongly recommended candidate:

- by Roberto Battiston [Professor, co-PI AMS-02, Univ. of Perugia]
 - => In my opinion Nicola is among the few best experimental physicists in his age range
- by Fiorenza Donato [assistant professor, Theoretical group, Univ. of Torino]
 - => He developed analytical and numerical tools for CR propagation;
 - => has the autonomy of a senior researcher, extremely talented, and a hard worker.

- Experimental works:

- AMS-01 analysis
- AMS-02 tracker calibration

ApJ 724, 329 (2010), Relative Composition and Energy Spectra of Light Nuclei in CRs: Results from AMS-01 ApJ 736, 105 (2011), Isotopic Composition of Light Nuclei in Cosmic Rays: Results from AMS-01

- Theoretical/phenomenology works:

- CR propagation
- CR acceleration

Tomassetti & Donato, A&A 544, 12 (2012), Secondary CR nuclei from SNRs and constraints on propagation parameters Tomassetti, ApJL 752, 13 (2012), Origin of the CR Spectral Hardening

Tomassetti, Ap&SS (2012), Propagation of H and He CR isotopes in the Galaxy: astrophysical and nuclear uncertainties

Such a profile exists!

- AMS Hadronic Tomography with Cosmic Rays

http://www.fisica.unipg.it/~tomassetti/research.html

Exposure Time: May 20 2011 - May 20 2012

Number of Protons: 3,676,863,217

Number of Helium nuclei: 620,303,906

Rigidity range: 2 GV - 2000 GV

Tomographic plane: Z = +165 cm

XY pixel size: 1 cm²

Credit: AMS Collaboration 2012

- + 2012: AMS-02 Physics Potential for Gamma-Ray Studies (3 AMS-02 internal notes)
- + 2011: AMS Physics Potential with Charged CRs (applet simulations on-line)

=> window of opportunity to get this candidate will probably close soon

Collaborations LAPP/LAPTh/LPSC

	Laurent DEROME AMS-02 group @ LPSC	Sylvie ROSIER-LEES AMS-France AMS-02 group @ LAPP	Pierre SALATI Astroparticle group @ LAPTh
Team	- 1 ½ CNRS - 1 émérite - 1 ½ MdC/Prof. - 1 post-doc	- 5 CNRS - 2 émérites - 1 post-doc - 1 PhD	- 1 CNRS - 2 Prof. - 1 PhD
"Science"	Nuclear fluxes (RICH)Propagation + GreATDark matter	- e- and e+ fluxes (ECAL) - Dark matter	- Propagation - Dark matter
Collaborations	AMS-01 (1998) +02 => 6 meetings sin	e launch P. Brun A. Fia	, J. Pochon (PhD) sson (Post-doc) veral papers aillet
	- 5 meetings (s - Failed ANR "	common projects/collaboration ince 2011) "USINE and pheno ipheno+AMS data analysis" (20 troLHC" 2012 (PI: Bélanger)	,,

Conclusions

- A lot of exciting science with AMS-02
 - 1. Data analysis:
 - Standard astrophysics: isotopes and nuclei analysis
 - Dark matter-related studies: anti-protons, γ-rays
 - 2. CR phenomenology:
 - Constraints on transport parameters
 - Constrains on dark matter
 - Numerical developments (propagation code USINE)
- Strong synergy/complementarity LAPP/LAPTh/LPSC
 - 1. Regular analysis meetings
 - 2. Regular phenomenology meetings
 - 3. Complementarity with ANR *DMAstroLHC*
- Impressive post-doc candidate (in principle)

=> Perfect timing to have a post-doc @ LPSC!