A gamma ray line from the Sky?

coll. with

Y. Mambrini, S. Pokorski and A. Romagnoni, JHEP 0908:014,2009

and arXiv:1205.1520 [hep-ph]

GDR Terascale Jussieu, nov. 7, 2012

A dark matter signature?

- The existence of dark matter in the Universe is known for a long time. Its origin and properties are however still mysterious .
- We are maybe living the golden age of dark matter physics, due to the triple interpretation of the DM-DM SM-SM interactions :
- DM annihilation into SM particles DM+DM → SM+SM : relic density (WMAP) and indirect DM detection
- -DM scattering on nuclei DM+ N → DM+ N : direct detection
- DM production in colliders (LHC) SM + SM → DM + DM

Of particular interest are the annihilations into photons

$$DM + DM \rightarrow photon + X (anything)$$

In this case the photon is monochromatic (M_Z=M_X here)

$$E_{\gamma} = M_{DM} \left[1 - \left(\frac{M_Z}{2M_{DM}} \right)^2 \right]$$

Clusters of Galaxies

Hektor, Raidal, Tempel 1207.4466

Dwarf, AGN, H clouds, earth limb: no

Clusters of Galaxies

Hektor, Raidal, Tempel 1207.4466

Clusters of Galaxies

Hektor, Raidal, Tempel 1207.4466

Unassiocated sources?

, AGN, H clouds, earth limb: no

Unassiocated sources?

One line or 2 lines?

Su Finkbeiner 1206,1616

[Tempel, Hektor, Raidal, 1205.1045]

One line or 2 lines?

Su Finkbeiner 1206,1616

[Tempel, Hektor, Raidal, 1205.1045]

FERMI resolution $\Delta E/E = 10\%$ not sufficient to distinguish 1 or 2 lines.

(0da, 1207.1537)

Generic issues with modeling

@ Being able to realize (077) ~ 10 cm² s¹ and still respecting WMAP

Generic issues with modeling

@ Being able to realize (077) ~ 10 cm² s¹ and still respecting WMAP

Generic issues with modeling

@ Being able to realize (077) ~ 10 cm² s¹ and still respecting WMAP

Being able to realize $\langle \sigma v \rangle_{YY} \sim 10^{-27} \text{cm}^2 \text{s}^{-1}$ and still respecting FERMI continuum photon from dwarf galaxies or other indirect detection constraints.

Dudas, Y. M., Romagnoni, Pokorski 2009/2009/2012 Jackson, Servant, Shaughnessz, Tait, Taoso, 2009 Das, Ellwanger, Mitropoulos 2012

Models type 1: resonance channel(s)

Models type 1: resonance channel(s)

Jackson, Servant, Shaughnessz, Tait, Taoso , 2009 Das, Ellwanger, Mitropoulos 2012

Models type 1: resonance channel(s) Dudas, Y. M., Romagnoni, Pokorski 2009/2009/2012 Jackson, Servant, Shaughnessz, Tait, Taoso, 2009 EY = MU[1-(MZ/2Mdm)] Das, Ellwanger, Mitropoulos 2012 dN/dE Ψ= DM candidate Ψ (w at rest) (scalar, vector...) EY (GeV)

114 130

Models type 1: resonance channel(s)

Jackson, Servant, Shaughnessz, Tait, Taoso , 2009 Das, Ellwanger, Mitropoulos 2012

ψ= DM candidate

Dudas, Y. M., Romagnoni, Pokorski 2009/2009/2012 Jackson, Servant, Shaughnessz, Tait, Taoso , 2009 Das, Ellwanger, Mitropoulos 2012

Models type 1: resonance channel(s)

Ψ= DM candidate

Does not need to be on the pole (depends on the couplings/loops..)

0 Usually, $\gamma\gamma$ and γZ are open. If only γZ is allowed, E γ =130 GeV => M ψ = 144.5 GeV. It happens if ϕ is a massive vector, and generates only one monochromatic line.

Models type 1: resonance channel(s)

Jackson, Servant, Shaughnessz, Tait, Taoso , 2009 Das, Ellwanger, Mitropoulos 2012

Ψ= DM candidate

- 0 Usually, $\gamma\gamma$ and γZ are open. If only γZ is allowed, $E\gamma=130$ GeV => $M\psi$ = 144.5 GeV. It happens if ϕ is a massive vector, and generates only one monochromatic line.
- \circ SUSY realization : φ = pseudoscalar, ψ \sim singlino (Ellwanger 2012)

Models type 1: resonance channel(s)

Jackson, Servant, Shaughnessz, Tait, Taoso , 2009 Das, Ellwanger, Mitropoulos 2012

Ψ= DM candidate

- 0 Usually, $\gamma\gamma$ and γZ are open. If only γZ is allowed, $E\gamma=130$ GeV => $M\psi$ = 144.5 GeV. It happens if ϕ is a massive vector, and generates only one monochromatic line.
- \circ SUSY realization: $\varphi = pseudoscalar$, $\psi \sim singlino$ (Ellwanger 2012)
- o Need another independant mechanism for WMAP

Models type 1: resonance channel(s)

Jackson, Servant, Shaughnessz, Tait, Taoso , 2009 Das, Ellwanger, Mitropoulos 2012

ψ= DM candidate

- 0 Usually, $\gamma\gamma$ and γZ are open. If only γZ is allowed, $E\gamma=130$ GeV => $M\psi$ = 144.5 GeV. It happens if ϕ is a massive vector, and generates only one monochromatic line.
- \circ SUSY realization : φ = pseudoscalar, ψ \sim singlino (Ellwanger 2012)
- · Need another independant mechanism for WMAP

$$\mathcal{L}_{int} = \frac{\lambda_X}{2} |\psi|^2 |X|^2 + \lambda_h |H|^2 |X|^2 + \frac{\lambda_{h\psi}}{2} |H|^2 |\psi|^2$$

o Can enhance h -> yy) channel

- © Can enhance h -> yy) channel
- @ «issue»: line => λx ~10 and Mx ~ 130 GeV

2012

Models type 3: intermediate state

@ EY=130 GeV => MΨ = 260 GeV.

2012

Models type 3: intermediate state

dN/dE

- @ EY=130 GeV => MU = 260 GeV.
- Seems like a mo, ochromatic line if Mψ ~Mφ.

Model type 4: internal bremstrahlung

Model type 4: internal bremstrahlung

<σv>ff ~ (mf/mψ) helicity suppressed

Model type 4: internal bremstrahlung

<σνγff ~ (mf/mψ) helicity suppressed
if Mỹ ~Mψ, <σνγffy ~ <σνγff</pre>

EY (GEV)

Model type 4: internal bremstrahlung

<σv>ff ~ (mf/mψ) helicity suppressed
if Mỹ ~MΨ, <σν>ffγ ~ <σν>ffγ ~ <σν>ffγ ~ <σν>ffγ ~ <σν>ffγ ~ <σν</pre>

o Less favored by FERMI (2.70)

Model type 4: internal bremstrahlung

o Less favored by FERMI (2.70)

if Mi ~MU, <OV> ffy ~ <OV> ff

o To fit a «monochromatic» line, Msfermion ~ 140 GeV

Hidden Z' DM models

Additional neutral gauge bosons can be light if hidden from SM. Natural communication between hidden U(1) and SM sectors

- \triangleright kinetic mixing $\mathcal{L}_{\text{mix}} = \epsilon F_{mn}^{Y} F_{mn}^{Z'}$
- ➤ Chern-Simons terms (loop of heavy fermions or Green-Schwarz mechanism in string theory)

$$\mathcal{L}_{CS} = \alpha_1 \epsilon^{mnpr} Z'_m Z_n F_{pr}^Y$$

If the mass of heavy fermions mostly generated by U(1)_X breaking, then effective operators should respect SM gauge symmetry. The Chern-Simons operator comes from

•
$$\frac{1}{\Lambda^2} \epsilon^{\mu\nu\rho\sigma} D_{\mu}\theta_X (H^+D_{\nu}H - D_{\nu}H^+H) F_{\rho\sigma}^Y$$

 $\rightarrow \frac{v^2}{\Lambda^2} \epsilon^{\mu\nu\rho\sigma} (Z'_{\mu} - \frac{\partial_{\mu}a'_Z}{V}) (B_{\nu} - \frac{\partial_{\mu}a_Y}{v}) F_{\rho\sigma}^Y$

where θ_X is the axion absorbed by Z' and

$$\theta_X \equiv \frac{a_X}{V}$$
 , $\mathcal{D}_{\mu}\theta_X \equiv \partial_{\mu}\theta_X - g_X Z'_{\mu}$

Results

Results

Results

DM 9D DM DM 90 DM

Baculle WMAP + fitting monochromatic line DM 90 DM α_1 DM 10 90 50 100 150 200 Higgs in Space Mz' (GeV) DM Top quark 9D DM DM

[Jackson, Servant, Shaughnessz, Tait, Taoso 09]

Conclusions

- Is it a real line or instrumental effect? The effect is based on 50 photons...
- One or two (or even three) lines will discriminate among different models.
- Have to wait for more data; hopefully within two years the DM interpretation of the signal will be disproved or confirmed. Waiting also for HESS (CTA) results.
- Hidden Z' models are interesting since generic in field and string theory