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Motivations for a one-loop QCD
calculation




Introduction: relic density

Relic density of Dark Matter is a very constraining observable for New Physics

models:

Qcpyvh? = 0.1126 4+ 0.0036

Precision of future experimental values (Planck) will require a high precision

calculation.

Its calculation requires the computation of thermally averaged (co)annihilation
cross-section of the Dark Matter particle:

dn
dt

s 7 i A <Uannv> (712 % ni@l)

Significant coannihilation contribution when masses of coannihilating particles are

close to each other.



Neutralino-Stop coanthilation

+ Neutralino-Stop coannihilation is one of the processes which can reduce relic
density down to the experimental value.

+ Implies that Neutralino and Stop are nearly degenerated.
* Need large mixing: possibly compatible with Higgs mass.
+ Light Stop: interesting for collider signatures.

* Very thin region in parameter space: will be shifed by corrections.

*  QCD corrections expected to be significant. A. Freitas [Phys. Let. B 652 (2007)]



Neutralino-Stop coanthilation

+ Differences with Freitas calculation:

+ Not only bottom-W and top-gluon but all possible final states (top-Z, top-
photon, top-Higgs, bottom-Higgs).

+ Neutralino not a pure bino, stop 1 not a pure stop right.

+ Very general: any neutralino with any sfermion.

+ Code to be public and interfaced with MicrOmegas and DarkSUSY.



State of the art

* MicrOmegas already include some effective corrections.
+ However the full one loop corrections are not included, and known to be important:

* Electroweak corrections studied by «<SLOOPS» collaboration.

N. Baro, F. Boudjema, A. Semenov [Phys. Rev. D 78 (2008)]
N. Baro, F. Boudjema [Phys. Rev. D 80 (2009)]
N. Baro, F. Boudjema, G. Chalons, S. Hao [Phys. Rev. D 81 (2010)]

+ QCD corrections studied by «<kDM@NLO» collaboration for annihilation into quarks.

B. Herrman, M. Klasen [Phys. Rev. D 76, (2007)]
B. Herrman, M. Klasen, K. Kovaftik [Phys. Rev. D 79, (2009)]
B. Herrman, M. Klasen, K. Kovaftik [Phys. Rev. D 80, (2009)]



Virtual Corrections:
Renormalization scheme




Neutralino-Stop coanthilation

* Tree-level diagrams (8 possible final states):

+  Vector final states
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* Higgs final states ; (




Virtual corrections diagrams

* Some vertex corrections, self-energies and boxes diagrams:
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Renormalization scheme

+ Renormalization of MSSM (QCD) implies renormalization of the sfermions.
+ As they mix together, the mixing angles have to be renormalized.

+ Here mixing matrix is renormalized before rotation to physical (1,2) basis. Hence
counter-terms for mixing angles appear.

+ Due to SU(2) invariance stop and sbottom sector have to be renormalized together:
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Renormalization scheme

+ Mixed DR/OS scheme: my, Ap, A in DR
me, myz, ,my Mg in OS
0:, 05, m;, dependant parameters
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to avoid large mixing angle counterterm: §0 ~



Renormalization scheme

* Then use appropriate counterterms:
+ dmy in DR, dmy in OS
* omg, ,0my ,0my in OS
* dmy,expressed in function of dmy; , dmy , dmy_ (OS) and dmy, 64, (DR)
s (Sl

* When all counterterms are calculated, we can cancel UV divergence of virtual
corrections.



Real Corrections




Cancellation of IR divergencies

+ Squarks and quarks can emit real gluons, which can be soft.

+ The IR divergences cancel with opposite divergences in the virtual corrections:




The Phase Space Slicing method

+ Divergences have completely different origins:
* In the real emission, they come from the 3 body phase space integration.

+ In the virtual corrections, they come from the integration over the internal
gluon momenta.

+ To perform the cancellation the divergent term has to be analytically extracted .

+ Use the Phase Space Slicing method which make use of the soft gluon
approximation:

* In the hard part of the phase space the cross-section is treated «as usual», i.e.
numerically integrated over the 3 final states.



The Phase Space Slicing method

+ In the soft part, thanks to the very low gluon energy the cross-section is
factorized into tree-level cross-section and a universal factor:

()., =" (i)
df soft df tree-level

+ The universal factor contains integrals /,; of the form:

d3k 1
S = (@5 /
y= (@) o<|Ri<a k0 (k.a)(k.b)

which can be calculated analytically and contains explicit IR divergence.

+ A is an unphysical cutoff which separate hard and soft part. Total result should not
depend (too much) on this parameter.



Dependance on the cutoft

+ Low cutoff: phase space integration is less accurate close to the divergence.
+ High cutoff: soft gluon approximation is not valid anymore.

* Medium cutoff: sum of both contribution does not depend on the cutoff value.
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Impact of corrections on the relic

density




pMSSM Benchmark point

We choose a coannihilation test point in the pMSSM:

tan 5 = 39

W= 1263 Obtained with SPheno [W. Porod, arXiv:hep-ph/0301101]
M1 =495.5

M, = 1000 Qcpmh? = 0.13797
M3 = 2965

M, = 1000 g :
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Ve 1950 o 2 (12%)
A¢ = 2000 Bl — ()

Obtained with MicrOmegas
[G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, arXiv:hep-ph/1005.4133]



lotal correction for lop-Z final
state

Relative correction (%) un function of = Tree-level and one-loop cross-sections (pb)
momenta un function of momenta
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—> Moderate correction ~ 5%



Total correction for Top-liggs
final state

Relative correction (%) un function of = Tree-level and one-loop cross-sections (pb)
momenta un function of momenta
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—> Larger correction ~ 13%



Impact on relic density

Relic density for tree-level and one-loop in
function of the neutralino-stop mass
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Impact on relic density

Relic density for tree-level and one-loop in
function of the neutralino-stop mass
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~—> Correction of the same order as experimental uncertainty



Conclusion




Conclusion

+ Correction on the relic density is shown to be here as large as the experimental
uncertainty.

+ More detailed study to come with different processes contributions, different
pMSSM scenarios, impact of renormalization scheme, etc.

+ Coannihilation was contributing for only ~40% here. Stop annihilation was also
important. This process is expected to receive large corrections + Sommerfeld
enhancement.

* Top - gluon final state is also important in large regions of parameter space, because
always kinematically allowed, provided that Neutralino and Stop are reasonnably

heavy.

* Larger QCD corrections are also expected. Non abelian corrections are being
calculated. Collinear divergence: two cutoff Phase Space Slicing needed.



