Dark Matter in a twisted bottle!

Giacomo Cacciapaglia
 IPN Lyon (France)

GDR Terascale, Paris
5 Novembre 2012

Why do we need Dark Matter?

Cosmic Microwave Background:
Observations both in Astrophysics and Cosmology suggest the presence of "Dark" Matter, not explained in the Standard Model!

Astrophysical measurements:

- The Universe contains 4.6% of baryons, and 23.3% of unknown matter.
- The flat rotation curves of spiral galaxies can be explained by the presence of extra non-luminous matter.

Extra dimensions are a versatile tool:

Can a parity arise "naturally" from extra dimensions?

- Symmetries of the compact space ARE parities for the Kaluza-Klein modes!
- The physics is in the wave functions: for instance

$$
\begin{gathered}
x_{5} \rightarrow-x_{5}=2 \pi-x_{5} \\
\left\{\begin{array}{l}
\cos \left(k x_{5}\right) \rightarrow \cos k\left(2 \pi-x_{5}\right)=\cos \left(k x_{5}\right) \\
\sin \left(k x_{5}\right) \rightarrow \sin k\left(2 \pi-x_{5}\right)=-\sin \left(k x_{5}\right)
\end{array}\right.
\end{gathered}
$$

Is this enough?

DM and XD, a troubled couple?

The typical situation is:

Let's consider the simplest case: one compact extra dimension!

A circle.

$$
x_{5} \leftrightarrow x_{5}+2 \pi
$$

DM and XD, a troubled couple?

The typical situation is:

We impose an "orbifold": identify points related by a symmetry

$$
x_{5} \rightarrow-x_{5}=2 \pi-x_{5}
$$

Each field has a fixed parity, and
KK modes of different parity are removed!

Fixed points!

$$
\phi\left(x_{5}\right)= \pm \phi\left(-x_{5}\right)
$$

Required by chirality!!!

KK parity is not natural!

The typical situation is:

Fixed points!

The half-circle is symmetric under:
$x_{5} \rightarrow \pi-x_{5}$
Is it? NO!
The two fixed points are different!
We need to impose a symmetry on the fixed points to have a DM candidate!!!

In this example, the parity is added ad-hoc, it has nothing to do with the extraD!!

KK parity is not natural! The typical situation is:

In Gauge-Higgs models (Hosotani mechanism) fermion localisation is essential!

Bulk fermion masses break the KK parity!

Already pointed out by
Barbieri, Contino, Creminelli, Rattazzi, Scrucca
hep-th/0203039
it has nothing to do with the extraD!!

Do orbifolds exist without fixed points and with chiral fermions?

G.C., A.Deandrea, J.Llodra-Perez 0907.4993

- There is none in 5D...
- In 6D there are 17 orbifolds (characterised by the discrete symmetry groups of the flat plane)...
- only ONE has chirality and no fixed points/lines! Unique candidate!

The flat real projective plane

$$
\begin{gathered}
\operatorname{pgg}=\left\langle r, g \mid r^{2}=\left(g^{2} r\right)^{2}=1\right\rangle \text { बc, ADoendeace Tlued } \\
r:\left\{\begin{array}{l}
x_{5} \sim-x_{5} \\
x_{6} \sim-x_{6}
\end{array} \quad g:\left\{\begin{array}{l}
x_{5} \sim x_{5}+\pi R_{5} \\
x_{6} \sim-x_{6}+\pi R_{6}
\end{array}\right.\right.
\end{gathered}
$$

Translations defined as:

$$
\begin{array}{ll}
t_{5}=g^{2} & (0, \pi) \sim(\pi, 0) \\
t_{6}=(g r)^{2} & (0,0) \sim(\pi, \pi)
\end{array}
$$

Two singular points:

KK parity is an exact symmetry of the space!

$$
p_{K K}:\left\{\begin{array}{l}
x_{5} \sim x_{5}+\pi \\
x_{6} \sim x_{6}+\pi
\end{array}\right.
$$

The flat real projective plane

$$
\begin{array}{r}
\operatorname{pgg}=\left\langle r, g \mid r^{2}=\left(g^{2} r\right)^{2}=1\right\rangle \text { बc. ADeardea, Jub } \\
r:\left\{\begin{array}{l}
x_{5} \sim-x_{5} \\
x_{6} \sim-x_{6}
\end{array} \quad g:\left\{\begin{array}{l}
x_{5} \sim x_{5}+\pi R_{5} \\
x_{6} \sim-x_{6}+\pi R_{6}
\end{array}\right.\right.
\end{array}
$$

Translations defined as:

$$
\begin{aligned}
& t_{5}=g^{2} \\
& t_{6}=(g r)^{2}
\end{aligned}
$$

Two singular points:
$(0, \pi) \sim(\pi, 0)$
$(0,0) \sim(\pi, \pi)$

KK parity is an exact symmetry of the space!
$p_{K K}:\left\{\begin{array}{l}x_{5} \sim x_{5}+\pi \\ x_{6} \sim x_{6}+\sim\end{array}\right.$

Spectrum of the SM

$p_{K K}=(-1)^{k+}$	$\begin{gathered} (0,0) \\ m=0 \end{gathered}$	$\begin{gathered} (1,0) \&(0,1) \\ m=1 \end{gathered}$	$\begin{gathered} (1,1) \\ m=1.41 \end{gathered}$	$\begin{gathered} (2,0) \&(0,2) \\ m=2 \end{gathered}$	$\begin{gathered} (2,1) \&(1,2) \\ m=2.24 \end{gathered}$
Gauge bosons G, A, Z, W	\checkmark		\checkmark	\checkmark	\checkmark
Gauge scalars G, A, Z, W		\checkmark	\checkmark		\checkmark
Higgs boson(s)	\checkmark		\checkmark	\checkmark	\checkmark
Fermions	\checkmark	\checkmark	$\checkmark(\times 2)$	\checkmark	$V(\times 2)$

DM candidate here!

Spectrum of the SM

$p_{K K}=(-1)^{k+}$	$\begin{gathered} (0,0) \\ m=0 \end{gathered}$	$\begin{aligned} (1,0) & \&(0,1) \\ m & =1 \end{aligned}$	$\begin{gathered} (1,1) \\ m=1.41 \end{gathered}$	$\begin{aligned} (2,0) & \&(0,2) \\ m & =2 \end{aligned}$	$\begin{gathered} (2,1) \&(1,2) \\ m=2.24 \end{gathered}$
Gauge bosons G, A, Z, W	\checkmark		\checkmark	\checkmark	\checkmark
Gauge scalars G, A, Z, W		\checkmark	\checkmark		\checkmark
Higgs boson(s)	\checkmark		\checkmark	\checkmark	\checkmark
Fermions	\checkmark	\checkmark	$\checkmark(\times 2)$	\checkmark	$\checkmark(\times 2)$

One-loop corrections are crucial to determine spectrum and decays!

Spectrum of the SM

Localised: KK number violating!

WMAP bounds!

There are several equally relevant contributions:

Annihilation

Co-annihilation
(small mass splitting)

Resonant annihilation
(s-channel level 2 states!)

G.Belanger, M.Kakizaki, A.Phukov 1012.2577

Level 2 annihilation
(level 2 decaying into SM pair!)

WMAP bounds!

- Annihilation into level-2 \Rightarrow increased cross-sections \Rightarrow higher mKK
- mloc controls $H(2,0)$ resonance!
- $H(2,0)$ opens resonant funnel!

WMAP bounds!

- Annihilation into level-2 \Rightarrow increased cross-sections \Rightarrow higher mKK
- mloc controls $H(2,0)$ resonance!
- $H_{(2,0)}$ opens resonant funnel up to 1200 !
WMAP preferred range: 700 < mKK < 1000

Direct detection bounds

Relevant processes:
 crucial the loop corrections to level-1 masses!

- The Spin-Independent cross section is enhanced by the small splittings!

Bound sensitive to
cut-off \wedge via log-div. loops!

Direct detection bounds

Relevant processes:
 crucial the loop corrections to level-1 masses!

- The Spin-Independent cross section is enhanced by the small splittings!

$R_{5}>R_{6}$

$R_{5}=R_{6}$

LHC signatures without MET:

tiers $(2,0)$ and $(0,2)$

G.C., B.Kubik 1209.6556

- Cleanest channels are di-lepton $\left(Z^{\prime}\right)$ and single lepton + MET $\left(W^{\prime}\right)$:

$$
\begin{aligned}
& Z_{(2,0)}, A_{(2,0)} \rightarrow| | \\
& W_{(2,0)} \rightarrow \mid v
\end{aligned}
$$

BR: 0.2\% !!

2011 Data only!

$R_{5}>R_{6}$

LHC signatures without MET:

tiers $(2,0)$ and $(0,2)$

LHC: the Higgs discovery!

- The KK resonances of W and top contribute to $H \rightarrow g g$ and $H \rightarrow Y Y$ loops!

ATLAS data

- $H \rightarrow Y Y$
- $H \rightarrow Z Z$

Conclusions and outlook

- Exact KK parity is a very selective requirement on XDs: RPP in 6D flat!
- SM on the RPP: rich but challenging pheno (small mass splitting!)
- Case $R_{5}=R_{6}$ excluded by Direct Searches.
- Case $R_{5}>R_{6}$ preferred range $700<m K K<1000$ GeV.
- LHC bounds @ mKK > 600 GeV level (leptonic Z^{\prime} and W^{\prime})
- Others: signatures with MET (+ jets) from (1,0) and (1,2); 4 tops from (1,1); etc.

For the levels $(1,0)$ and $(0,1)$:

$$
m=m_{K K}+\delta m
$$

Other LHC bounds

Pair of di-jet resonances

$R_{5}>R_{6}$

