

Dark Matter in a twisted bottle!

Giacomo Cacciapaglia

IPN Lyon (France)

With: A.Arbey, A.Deandrea, B.Kubik, J.Llodra-Perez

GDR Terascale, Paris
5 Novembre 2012

Why do we need Dark Matter?

Observations both in Astrophysics and Cosmology suggest the presence of "Dark" Matter, not explained in the Standard Model!

Astrophysical measurements:

Cosmic Microwave Background:

- The Universe contains 4.6% of baryons, and 23.3% of unknown matter.
- The flat rotation curves of spiral galaxies can be explained by the presence of extra non-luminous matter.

Extra dimensions are a versatile tool:

Can a parity arise "naturally" from extra dimensions?

- Symmetries of the compact space ARE parities for the Kaluza-Klein modes!
- The physics is in the wave functions: for instance

$$x_5 \to -x_5 = 2\pi - x_5$$

$$\begin{cases} \cos(kx_5) \to \cos k(2\pi - x_5) = \cos(kx_5) \\ \sin(kx_5) \to \sin k(2\pi - x_5) = -\sin(kx_5) \end{cases}$$

Is this enough?

DM and XD, a troubled couple? The typical situation is:

Let's consider the simplest case: one compact extra dimension!

A circle.

$$x_5 \leftrightarrow x_5 + 2\pi$$

DM and XD, a troubled couple? The typical situation is:

We impose an "orbifold": identify points related by a symmetry

$$x_5 \to -x_5 = 2\pi - x_5$$

Each field has a fixed parity, and KK modes of different parity are removed!

$$\phi(x_5) = \pm \phi(-x_5)$$

Required by chirality!!!

KK parity is not natural! The typical situation is:

The half-circle is symmetric under:

$$x_5 \rightarrow \pi - x_5$$

Is it? NO!
The two fixed points are different!

We need to impose a symmetry on the fixed points to have a DM candidate!!!

In this example, the parity is added ad-hoc, it has nothing to do with the extraD!!

KK parity is not natural! The typical situation is:

In Gauge-Higgs models (Hosotani mechanism) fermion localisation is essential!

Bulk fermion masses break the KK parity!

n†!

Already pointed out by Barbieri, Contino, Creminelli, Rattazzi, Scrucca hep-th/0203039

it has nothing to do with the extraD!!

Do orbifolds exist without fixed points and with chiral fermions?

G.C., A.Deandrea, J.Llodra-Perez 0907.4993

- There is none in 5D...
- In 6D there are 17 orbifolds (characterised by the discrete symmetry groups of the flat plane)...
- only ONE has chirality and no fixed points/lines! Unique candidate!

Requiring an exact parity and chirality is rather restrictive!

The flat real projective plane

$$\mathbf{pgg} = \langle r,g | r^2 = (g^2 r)^2 = \mathbf{1}
angle$$
 G.C., A.Deandrea, J.Llodra-Perez 0907.4993

$$r: \left\{ \begin{array}{l} x_5 \sim -x_5 \\ x_6 \sim -x_6 \end{array} \right.$$

$$g: \begin{cases} x_5 \sim x_5 + \pi R_5 \\ x_6 \sim -x_6 + \pi R_6 \end{cases}$$

Translations defined as:

$$t_5 = g^2$$

$$t_6 = (gr)^2$$

Two singular points:

$$(0,\pi) \sim (\pi,0)$$

 $(0,0) \sim (\pi,\pi)$

KK parity is an exact symmetry of the space!

$$p_{KK}: \begin{cases} x_5 \sim x_5 + \pi \\ x_6 \sim x_6 + \pi \end{cases}$$

The flat real projective plane

$$\mathbf{pgg} = \langle r,g | r^2 = (g^2 r)^2 = \mathbf{1}
angle$$
 G.C., A.Deandrea, J.Llodra-Perez 0907.4993

$$r: \left\{ \begin{array}{l} x_5 \sim -x_5 \\ x_6 \sim -x_6 \end{array} \right.$$

$$g: \begin{cases} x_5 \sim x_5 + \pi R_5 \\ x_6 \sim -x_6 + \pi R_6 \end{cases}$$

Translations defined as:

$$t_5 = g^2$$

$$t_6 = (gr)^2$$

Two singular points:

$$(0,\pi) \sim (\pi,0)$$

$$(0,0) \sim (\pi,\pi)$$

KK parity is an exact symmetry of the space!

$$p_{KK}: \left\{ \begin{array}{l} x_5 \sim x_5 + \pi \\ x_6 \sim x_6 + \pi \end{array} \right.$$

Spectrum and interactions determined by these symmetries!

Spectrum of the SM

(2,0) & (0,2) (2,1) & (1,2) (1,0) & (0,1) (0,0)(1,1) $p_{KK} = \overline{(-1)^{k+l}}$ m = 0m = 2.24m = 2m = 1m = 1.41Gauge bosons G, A, Z, W Gauge scalars G, A, Z, W Higgs boson(s) $\sqrt{(x2)}$ \checkmark (x2) Fermions

DM candidate here!

Spectrum of the SM

(2,0) & (0,2) (1,0) & (0,1) (2,1) & (1,2) (1,1)(0,0) $\overline{p_{KK}} = \overline{(-1)^{k+l}}$ m = 0m = 1.41m = 2.24m = 1m = 2Gauge bosons G, A, Z, W Gauge scalars G, A, Z, W Higgs boson(s) √ (x2) $\sqrt{(x2)}$ Fermions

One-loop corrections are crucial to determine spectrum and decays!

Spectrum of the SM

Localised: KK number violating!

WMAP bounds!

There are several equally relevant contributions:

A.Arbey, G.C., A.Deandrea, B.Kubik 1210.0384

Annihilation

Co-annihilation (small mass splitting)

Resonant annihilation

(s-channel level 2 states!)

G.Belanger, M.Kakizaki, A.Phukov 1012.2577

Level 2 annihilation (level 2 decaying into SM pair!)

WMAP bounds!

- ♠ Annihilation into level-2 ⇒ increased cross-sections ⇒ higher mKK
- mloc controls H(2,0) resonance!
- H(2,0) opens resonant funnel!

WMAP bounds!

- mloc controls H(2,0) resonance!

H(2,0) opens resonant funnel up to 1200!

WMAP preferred range: 700 < mKK < 1000

Direct detection bounds

Relevant processes: crucial the loop corrections to level-1 masses!

The Spin-Independent cross section is enhanced by the small splittings!

Bound sensitive to cut-off Λ via log-div. loops!

Direct detection bounds

Relevant processes: crucial the loop corrections to level-1 masses!

The Spin-Independent cross section is enhanced by the small splittings!

R5 > R6

 $R_5 = R_6$

LHC signatures without MET:

tiers (2,0) and (0,2)

G.C., B.Kubik 1209.6556

Cleanest channels are di-lepton (Z') and single lepton + MET (W'):

$$Z_{(2,0)}$$
, $A_{(2,0)} \rightarrow II$

BR: 0.2% !!

W_(2,0) -> l V

2011 Data only!

LHC signatures without MET:

tiers (2,0) and (0,2)

G.C., B.Kubik 1209.6556

LHC: the Higgs discovery!

G.C., A.Deandrea, J.Llodra-Perez 0901.0927 G.C., A.Deandrea, G.Drieu La Rochelle, J.B.Flament 1210.8120

The KK resonances of W and top contribute to H→gg and H →γγ loops!

ATLAS data

 \odot $H \rightarrow \gamma\gamma$

 \odot H \rightarrow ZZ

mKK = 600 GeV

 k_{gg} , $k_{YY} \approx 1/mKK^2$

Conclusions and outlook

- Exact KK parity is a very selective requirement on XDs: RPP in 6D flat!
- SM on the RPP: rich but challenging pheno (small mass splitting!)
- © Case R5 = R6 excluded by Direct Searches.
- © Case R₅ > R₅ preferred range 700 < mKK < 1000 GeV.
- LHC bounds @ mKK > 600 GeV level (leptonic Z' and W')
- Others: signatures with MET (+ jets) from (1,0) and (1,2); 4 tops from (1,1); etc.

For the levels (1,0) and (0,1):

$$m = m_{KK} + \delta m$$

Other LHC bounds

Pair of di-jet resonances

R₅ > R₆