Status and Prospects of $(g-2)_{\mu}$ measurements g-2/EDM/LFV

F. Kapusta

LPNHE Paris CNRS/IN2P3/UPMC

GDR Terascale LPNHE-Paris

Outline

Status

Prospects: From CERN and BNL to FERMILAB and J-PARC

Prospects from the french side

A bit of history: CERN and BNL

• 1957: Garwin, Lederman, Weinrich at Nevis

$$g_{\mu} = 2.00 \pm 0.10$$

- 1965: CERN I $a_{\mu} = 0.001162(5) \pm 4300$ ppm sensitive to 2nd order
- 1968: Second CERN experiment $a_{\mu}=0.00116616(31)\pm270$ ppm Sensitive to 3rd order QED and light-by-light scattering
- 1979: Third CERN Experiment $a_{\mu}=0.001165924(8.5)\pm7$ ppm Sensitive to hadronic vacuum polarization
- 1984: Brookhaven E821
 QED was calculated to fourth order

 First publication in 1999

T. Kinoshita "Tenth-Order QED Calculation ..." a_e and a_μ

Introduction

 Measurement of a_e at Harvard has reached an astonishing precision of 0.24 ppb.

$$a_e(HV) = 1 159 652 180.73 (0.28) \times 10^{-12} [0.24ppb].$$

Hanneke, Fogwell, Gabrielse, PRL 100, 120801 (2008). Hanneke, Fogwell Hoogerheide, Gabrielse, PRA 83, 052122 (2011).

• Measurement of a_{μ} at BNL achieved the precision of 0.5 ppm.

$$a_{\mu}(BNL) = 116\,592\,089\,(63) \times 10^{-11}$$
 [0.5ppm].

Bennett et al., PRL 92, 161802 (2004). Roberts, Chinese Phys. C 34, 741 (2010).

They provide the most stringent tests of QED and Standard Model.

T. Kinoshita "Tenth-Order QED Calculation ..." a_e and a_μ

Collecting all contributions we obtain

$$a_{\mu}(SM) = 116\,591\,840\,(59) \times 10^{-11},$$

and

$$a_{\mu}(\exp) - a_{\mu}(SM) = 249 (87) \times 10^{-11}$$

where the uncertainty of "theory" comes mostly from hadronic terms.

- Theory and experiment seem to disagree by \sim 3 s.d.
- Is this indication of new physics beyond S. M. or something else?

T. Kinoshita "Tenth-Order QED Calculation ..." Comments on ae

• In terms of new values of $A_1^{(8)}$ and $A_1^{(10)}$ we find

$$\alpha^{-1}(a_e) = 137.035 999 166 8 (62)(46)(19)(331)$$
 [0.25 ppb],

where 62, 46, 19, 331 are uncertainties of 8th-order, 10th-order, hadronic and electroweak terms, and $a_e(\exp)$.

• This is to be compared with the value of $\alpha^{-1}(Rb)$,

$$\alpha^{-1}(Rb) = 137.035 999 049 (90)$$
 [0.66 ppb],

calculated from the measurements of h/m_{Rb} , Rydberg constant, and m_{Rh}/m_e .

Bouchendira et al., PRL 106, 080801 (2011).

They are about 1.3 s.d. apart.

T. Kinoshita "Tenth-Order QED Calculation ..." Comments on ae

- To conclude, the jelly-built structure still looks good at the precision exceeding 1 part in 109.
- If disagreement is detected at the next level of precision it might indicate that breakdown of SM comes, not necessarily from high energy region, but from an entirely unexpected direction.
- Unfortunately such an event may not be detectable until α is measured by some independent method with precision comparable to that of $\alpha(a_e)$.
- Until then, α(a_e) serves as the yardstick by which validity of other types of measurements and their theories is examined.

F. Domingo " $(g-2)_{\mu}$ and SUSY Extensions of the SM"

Introduction: SUSY $(G-2)_{\mu}$ and MSSM $(G-2)_{\mu}$ and NMSSM

Constraints on the MSSM parameter space

8 / 24

- Chargino/Slepton loop tends to be dominant;
 - Effect $\propto Y_{\mu} \propto \tan \beta$;
- $\mu > 0$ required;
- Light binos can also have significant effect.

Conclusion: The 3σ deviation can be reproduced provided SUSY particles are sufficiently light

Introduction: SUSY

 $(G-2)\mu$ and MSSM

 $(G-2)\mu$ and NMSSM

Consequences of a ~ 125 GeV Higgs?

In a Constrained Model

CMSSM/NUHM: Universality conditions at the GUT scale for the SUSY-breaking terms.

- $(G-2)_{\mu}$: light SUSY particles;
- m_H ~ 125 GeV: heavy SUSY particles;
 ⇒ Tensions...

[Buchmuller et al., 2011]

Model	Minimum	Fit Prob-	$m_{1/2}$; m_0	A_0	$\tan\beta$
	$\chi^2/{ m d.o.f.}$	ability	(GeV) (GeV)	(GeV)	
CMSSM					
pre-Higgs	28.8/22	15%	780 i 450	-1110	71
$M_h \simeq 125$ GeV, $(g-2)_{\mu}$	30.6/23	13%	1800 i 1080	860	48
$M_h \simeq 125$ GeV, no $(g-2)_\mu$	21.0/22	52%	2000 1050	430	46
$M_h \simeq 119 \text{ GeV}$	28.8/23	19%	780 I 450	-1110	41
NUIIM1					
pre-Higgs	26.9/21	17%	730 15 0	-910	41
$M_h \simeq 125~{\rm GeV}, (g-2)_{\mu}$	29.7/22	13%	830 290	660	33
$M_h \simeq 125 \; { m GeV}, \; { m no} \; (g=2)_{\mu}$	20.6/21	48%	2000 j 1400	2560	47
$M_h \simeq 119~{ m GeV}$	26.9/22	22%	730 150	-910	41

Table I Comparison of the best-fit points found in the CMSSM and NUHM1 pre-Higgs [3] and for the two potential LHC Higgs mass measurements discussed in the text. $M_{\Lambda} \simeq 119$ and 125 GeV. In the latter case, we also cave results if the (a = 2), constant is stroped.

In the general case

- $(G-2)_{\mu}$: essentially sensitive to 2nd generation sleptons $(\tilde{y}_{\mu}, \tilde{\mu})$;
- Higgs mass: essentially sensitive to 3rd generation squarks (\tilde{T}, \tilde{B}) ;
 - ⇒ Both constraints are no longer mutually exclusive.

Introduction: SUSY

 $(G-2)_{tt}$ and MSSM

 $(G-2)_{tt}$ and NMSSM

Specific NMSSM Contributions: Light Pseudoscalar

Light Pseudoscalars in the NMSSM:

- Higgs Effects negligible in the SM and the MSSM: $m_H \ge 115 \,\text{GeV} \implies a_u^H \le 5.10^{-14}$;
- NMSSM: Pseudoscalars A₁ can be very light (~ a few GeV) without violating LEP constraints;
- **9** B-constraints $(B_s \to \mu^+ \mu^-, B \to X_s \mu^+ \mu^-, \Upsilon \to \gamma \tau^+ \tau^-, ...)$ can be avoided too.

Light Pseudoscalars can lead to a non-negligible effect on a_{μ} , specific to the NMSSM.

Light Pseudoscalar contribution to a_{ij} [Krawczyk (2002), Gunion et al. $(20\bar{0}6)1$

- 1-loop contribution negative / 2-loop contribution positive;
- When $m_{A_1} \ge 3 \, GeV$, 2-loop contribution dominates;
- Proportional to $\tan^2 \beta$;
- Proportional to A_1 coupling to the Standard sector (doublet component). F. Kapusta (LPNHE Paris)

7 November 2011

Introduction: SUSY $(G-2)_{\mu}$ and MSSM $(G-2)_{\mu}$ and NMSSM

Conclusion

- Hint for Physics beyond the SM in $(G-2)_{\mu}$ favours New Physics close to the EW scale.
- Interestingly, SUSY-inspired models seem able to generate an effect of the correct order of magnitude...
 - \dots provided sufficiently-light SUSY particles / $an \beta$ -enhancement.
 - \Rightarrow Significant constraints on their parameter spaces!
- New effects beyond MSSM can be relevant.

From N. Saito 2nd Workshop on Muon g-2 and EDM in the LHC Era

Magic vs "New Magic"

■Complimentary!

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

BNL/Fermilab Approach

$$a_{\mu} - \frac{1}{\gamma^2 - 1} = 0$$

$$\eta \approx 0$$

$$\eta \approx 0$$

J-PARC Approach

$$\vec{E} = 0$$

$$\vec{E} = 0 \qquad \vec{\omega} = \vec{\omega}_a + \vec{\omega}_{\eta}$$

Both
FERMILAB New g-2 Experiment (submitted to the DOE Office of HEP 5 april 2010)
and
J-PARC g-2/EDM (LOI submitted at the 8th PAC 17-19 july 2009)

intend to start physics run around 2016

BNL-E821 FNAL-E989 This Experiment Muon momentum 3.09 GeV/c0.3 GeV/c29.3 3 Polarization 100% > 90% B = 1.45 TB = 3.0 TStorage field Focusing field Electric Quad. very-weak magnetic Cyclotron period 149 ns 7.4 ns Anomalous spin precession period $4.37 \mu s$ $2.11~\mu s$ 5.0×10^{9} 1.8×10^{11} 1.5×10^{12} # of detected e^+ 3.6×10^{9} # of detected e-Statistical precision 0.46 ppm0.1 ppm $0.1 \, \mathrm{ppm}$

JPARC Calendar

27 november 2009: Proto-Collaboration Meeting 15-17 january 2010: Proposed at the 9th PAC Received strong encouragement and support for further R&D

8-9 june 2010: 1st CM 16-18 july 2010: Updates presented at the 10th PAC PAC asked more detailed schedule with a set of

milestones

9-10 december 2010: 2nd CM

14-16 january 2011: Response submitted at the 11^{th}

PAC

29-30 june 2011: 3rd CM

8-10 july 2011: Status Report at the 12th PAC

7 september 2011: Mini-CM

10-12 november 2011: 4th CM

13-15 january 2012: CDR presented at the 13th PAC

Stage-1 recommended to IPNS Director

15-17 march 2012: Muon at MLF at the $14^{\rm th}$ PAC 13-15 july 2012: Status Report at the $15^{\rm th}$ PAC

21 september 2012:

 $Stage1 \quad Status \quad granted \quad P34 \rightarrow E34$

JPARC μ^+ beamline

$$N_e(t) = rac{N_e^{cut}}{\gamma au} \exp(-rac{t}{\gamma au})[1 - A\cos(\omega_a t)] \Delta t \ rac{\Delta \omega_a}{\omega_a} \propto rac{1}{A\sqrt{N_e^{cut}} \gamma_B}$$

$$\vec{\omega_a} = -\frac{e}{m}[a_\mu \vec{B} + \frac{\eta}{2}(\vec{\beta} \times \vec{B})]$$
$$\vec{d_\mu} = \eta \frac{e}{2m_\mu c} \vec{s}$$

Simulation, Tracking and Detector Characterization

Muon storage magnet and detector

Requirements

- Tracking e+ from muon decay (p = 200-300 MeV/c)
- Trackback vertex resolution $\sigma_r = 1$ mm for the focusing field n=3x10⁻⁵
- No contamination in B-field (< 1ppm) and E-field (<10mV/cm) in the muon storage region.
- Efficient and stable over ~5 lifetime (33μs)
 - Notes
 - Instantaneous rate changes by two orders of magnitude.
 - Flipping spin of muon will cancel rate effect in the leading order.

Simulation, Tracking and Detector Characterization

Silicon strip tracker

Detector module

Item	Specifications
Fiducial volume	240mm (radial) x 400 mm (axial)
Number of vane	48 (subject for optimization)
Sensor technology	Double- or single-sided Silicon strip sensor
Strip	axial-strip: 188µm pitch, 72mm long, 384 ch radial-strip: 255µm pitch, 98mm long, 384 ch
Sensor dimension	74 mm x 98 mm x 0.32mm
Number of sensor	576 (12 sensors per vane)
Number of channel	442,368 ch
Time measurement	Period : 33 μ s, Sampling time : 5ns

detector development team

KEK

- Osamu Sasaki
- Manobu Tanaka
- Masahiro Ikeno
- Tomobisa Uchida
- Takashi Kohriki
- Naohito Saito
- Tsutomu Mibe
- Kazuki Ueno
- Univ. of Tokyo
- Takuva Kakurai - Shoichiro Nishimura
- Rikkyo Univ.
- liro Murata
- Haruna Murakami Tomomi Sakuda
- Sachi Ozaki

- - Hirokazu Ikeda
 - Kvoto-U
 - Yoshihisa Iwashita
- LPHNE Paris
 - Frédéric Kapusta
 - Wilfrid da Silva Jean-Francois Genat Jagues David
- CC-IN2P3 Lyon

19 / 24

1-3 november 2012 CM6 News

Post-CDR Milestones

- Demonstration of UCM Production : $10^6 \mu^+/{\rm sec} \ {\rm or} > 1\% \ {\rm conversion} \ {\rm efficiency}$
- Muon acceleration test: RFQ and IH
- Prototyping Precision Magnet: Control local precision < 1 ppm
- Injection and Kicker: With low-E electron
- \bullet High-rate tracker Verify the time response up to $> 1 \text{MHz} \ / \text{strip}$

Organizational Changes

- KEK
 - Prof. Atsuto Suzuki will continue as DG
 - Prof. Nobu Toge (our collaborator) appointed as an Executive Board Member
- KEK-IPNS
 - New Director : Prof. Masa Yamauchi
 - COMET-phase 1 to be realized
 - Continue R&D of g-2/EDM for realization
 - g-2/EDM group and LFV group merged together as Muon Group for the mission stated above
- J-PARC Center
 - New Director : Dr. Yujiro Ikeda
 - New deputy directors
 - Takashi Kato for JAEA side
 Nachito Saito for KEK side
- And a talk by T. Kinoshita

2nd of november 2012

"Tenth-Order QED Calculation of Lepton Anomalous Magnetic Moments"

JPARC g-2/EDM/LFV Activities

COME^{nd-e} conversion search wit

- Search for LFV process, μ-e conversion with a sensitivity of 10¹⁶
- Utilize J-PARC Hi- Intensity proton beam
- Innovative apparatus
- Pion collection
- Muon Transport
- Electron Spectrometer

Staging Approach phase-I: ~1e-14 phase-II: ~1e-16

"Muon Group" (g-2/EDM and LFV) from the french side

- French participation for the g-2/EDM CDR : 2011-2012.
- Workshop in Paris, 25 may 2012.
- Paris Group: 2 physicists, 2 electronicians
- COMET with UCL and IC british colleagues
- A subtopic of the GDR Terascale for precision measurements : g-2/EDM/LFV.
- You are welcome to join the Muon Group Collaboration both Exp and Th.