

Search for Technicolor in ATLAS

Ludovica Aperio Bella on behalf of the ATLAS Collaboration CNRS/IN2P3/LAPP

GDR Terascale@Paris 5/7 November 2012

<u>Contents</u>

- Technicolor overview
- TC and Higgs discovery
- Study of Wjj production
- Search in diboson channel
- Search for resonances in I⁺I⁻ channel

Technicolor

L. Aperio Bella

 $M_{W} \equiv \frac{1}{2} g f_{\pi} = 31 \text{ MeV !!}$

 $M_{_7} \equiv M_{_{W}} / \cos \theta_{_W} = 35 \text{ MeV !!}$

3

Alternative to the Standard Model Higgs mechanism

- \rightarrow Technicolor (TC) models:
- Introduces a new strong dynamics
- Predicts new fermions (techniquarks) sensitive to TC
 - \rightarrow typically N_{D} isospin doublets
 - \rightarrow gauge invariant under SU(N_{TC})_{TC}

If $N_{TC} = 3$:

- QCD-like dynamics at scale O(Λ_{TC}):
- When coupling becomes strong: chiral symmetry breaks
 - $SU(2)_{R} \Rightarrow SU(2)_{R} \Rightarrow SU(2)$

- $\langle Q_L Q_R \rangle \neq 0 \sim \Lambda_{TC}$
- ⟨Q_LQ_R⟩ not invariant under SU(2)₁⊗U(1)_y ⇒ spontaneous EWSB

QCD case $\Lambda_{TC} = f_{\pi} = 93 \text{ MeV & } N_{TC} = 3:$

Technicolor (II)

- The $N_{\rm D}$ Technicolor isospin doublets are invariant under SU(N $_{\rm TC})_{\rm TC}$ gauge group
 - $SU(2)_{R} \rightarrow dynamically broken:$
 - $\langle Q_L Q_R \rangle \neq 0 \sim \Lambda_{TC} \sim F_{\pi_T} = 246 \text{ GeV}! \rightarrow M_W \equiv \frac{1}{2} \text{ g} \cdot F_{\pi_T} \rightarrow \text{right gauge bosons mass}$

 \rightarrow but EW precision constraints & flavor-changing neutral currents:

 \rightarrow "scaled-up QCD" models with a running coupling: <u>are excluded</u>

 \rightarrow TC with a <code>"walking"</code> coupling is OK

Low-scale Technicolor (LSTC) model

 $SU(N_{TC}=4) ; N_{D}=9$ $\rightarrow \Lambda_{TC} \sim 246 \text{ GeV}/\sqrt{N_{D}} \sim 100 \text{ GeV}$ $Q_{U}-Q_{D}=1$

Walking coupling

QCD-like spectrum with scale O(Λ_{TC}):

-Scalar Technipions: $\pi_{_T}$ (Goldstone bosons) -Vector Technimesons: near-degenerate $\rho_{_T\prime}\omega_{_T}$ axial $a_{_T}$

Techni-isospin ~ good symmetry $\rightarrow m(\rho_T) = m(\omega_T)$ •Walking decreases $m(\rho_T)/m(\pi_T)$ splitting •V $\rightarrow n\pi_T$ decays are typically forbidden Narrow resonances • Main Decays modes: $\begin{cases} \cdot \pi_T \rightarrow jj \\ \cdot \rho_T^0/\omega_T^0, a_T^0 \rightarrow II, Z\gamma \\ \cdot \rho_T, a_T \rightarrow WZ, W\gamma \end{cases}$

LSTC previous studies

CDF Excess in Wjj production for $m_{ij} = 144\pm5$ GeV width ~ detector resolution

R.Foadi, M. T. Frandsen, S. Sannino PRD 79 (2009) 035006

Minimal Walking TC (MWT) model

- Smaller representation \rightarrow adjoint SU(2) \rightarrow less particles in the spectrum
 - Simplest spectrum no π_{τ} (only longitudinal components of the W Z)
- Important parameters are the coupling \hat{g} and $M_{_{\!\!A}}$, which set:
 - Resonance cross sections, widths and mass splittings
- Different notation: $R_1 = \rho_T$ and $R_2 = a_T$ resonances
 - Lightest triplets of vector mesons, defined as $\rightarrow m_{R} > m_{R}$

TC models and H discovery?!?

- LSTC:
- Higgs-less model but...
- New pseudo-scalar resonance $\eta_{\scriptscriptstyle T}$

 $\rightarrow m_{\eta_{T}} \sim = 125 \text{GeV}$

- Dominant decay modes:
- $-\eta_{T} \rightarrow gg, \gamma\gamma, ff_{bar}$

 \rightarrow 2-photon rate ~same as H

→ but very little ZZ*, WW*

- MWT:
- Composite Higgs in the spectrum $\rightarrow \sigma_{_T}$ = H
 - Diphoton MWT/SM rate ~ order one
 - gHZ*Z and gHW*W MWT rate ~ 20% SM

The LHC and the ATLAS detector

LHC proton-proton collider

L. Aperio Bella

9

ATLAS-CONF-2011-097

$\underline{\rho_{\mathrm{T}}} \rightarrow W \pi_{\mathrm{T}} \rightarrow W jj \text{ at ATLAS}$

Repeat CDF study of W + 2 jets production
Keep selection as close as possible to CDF Less favorable than at TeVatron: signal x4 but W+jets bkg x20

•<u>Selection</u>:

- $E_T > 25 \text{ GeV}$ (e), $p_T > 20 \text{ GeV}$ (µ)
- MET > 25 GeV, m_{τ} > 40 GeV
- p_τ(jet) > 25 GeV in in |η|<2.8
- $p_T j j > 40 \text{ GeV}$, $|\Delta \eta_{ij}| > 2.5$

ATLAS Search diboson channel

Two hierarchy mass assumption
 1) m(a_τ) >> m(ρ_τ)

2) $m(a_T) = 1.1^* m(\rho_T)$ Contribution of both the axial and the vector resonances

- LSTC resonance
 - \rightarrow very narrow
- The main decay channel diboson
 → WZ production

- $m_{\rho T} = m_{\pi T} + m_W \rightarrow BR(WZ) \sim 98\%$

wide range of Mass
 → from <u>hundred GeV to few TeV</u>

L. Aperio Bella

LSTC in diboson resonances

L = 1.02 fb⁻¹

EXPERIMENT

Run Number: 183780, Event Number: 7827222 Date: 2011-06-20, 23:54:44 CET

Cells:Tiles, EMC

<u>Strategy</u>

- WZ production in the WZ → IvII
- 3 isolated leptons
- Large MET
- SM bkg evaluated control regions
- If no excess found
 - \rightarrow Limit set on σB using m_r(WZ)

Event selection and background

- $\rho_T(a_T) \rightarrow WZ \rightarrow |\nu|'|', (|,|'=e,\mu)$
- ▶ 2 opposite sign leptons with $m_{\parallel} m_{z} < 20 GeV$
- ► 3rd lepton + MET>25GeV
- Only 3 leptons (ZZ background)
- ▶ m_T^W > 15 GeV

Backgrounds

- Diboson final state \rightarrow
- MC: Non-resonant WW, WZ, ZZ, Zy

Fake (and non-prompt) leptons →
 Data-driven: Il'+jets

Use $m_T(WZ)$ distribution to search for resonant WZ production. \rightarrow <u>No Evidence for a resonance in the</u> $m_T(WZ)$ spectrum

Set 95% CL limit on $\sigma B vs m(\rho_T)$: \rightarrow For each test mass, use binned LLR for each channel and combine four channels together (modified frequentest approach)

Interpretation in the $m(\pi_T)$: $m(\rho_T)$ plane

$A imes \epsilon$	Excluded $\rho_{\rm T}$ mass [GeV]			
for the $\rho_{\rm T}$ technimeson	$m_{\mathrm{a_T}} = 1.1 m_{\rho_{\mathrm{T}}}$	$m_{ m a_T} \gg m_{ ho_T}$		
W' in PYTHIA	483 (553)	469 (507)		
ρ_{T} in pythia	467 (506)	456 (482)		

ATLAS Search dilepton channel

- •TC resonance
 - \rightarrow very narrow
- The dilepton channel is the cleanest sample.
- •2 TC models considered
- wide range of Mass
 - → from <u>hundred GeV to few TeV</u>

- TC resonances couple to lepton pairs through the Drell-Yan process.
- Contribution of both the axial and the vector resonances

EXPERIMENT

TC in dilepton resonances

Run Number: 186721, Event Number: 111269544 Date: 2011-08-03, 02:11:56 CET EtCut>0.4 GeV PtCut>0.2 GeV Vertex Cuts: Z direction<1cm, Rphi <1cm

Electron:Orange Cells:Tiles, EMC Collection:c/g

Strategy

- Looking for <u>high-mass TC resonances</u> in the dilepton invariant mass spectrum:
 - \rightarrow 2 isolated leptons very high energy
- If no excess found
 - \rightarrow Limit set on σ B and parameter phase space

Search for resonances in I+I- channel

Inv mass distribution of the lepton pair with highest $p_{\scriptscriptstyle T}$

• Backgrounds:

Real lepton MC expectation:

- \rightarrow Drell-Yan (dominant & irreducible)
- \rightarrow Diboson (WZ,ZZ,WW), tt

Fake lepton Data-Driven:

- \rightarrow W+jets, QCD multijets
 - <u>Normalization of SM</u>
 <u>expectation and data over</u>
 <u>the Z peak</u>

Limit on the LSTC model

No excess observed \rightarrow 95% CL limits on the $\sigma B vs m(\rho_T / \omega_T)$ using Bayesian approach:

$$m(\rho_T) = m(\pi_T) + m(W)$$

$$m(a_T) = 1.1 \times m(\rho_T/\omega_T)$$

<u>Model parameter space limit</u>

- Extend the 1D Limits
 - limit on the σB vs mass are used to constraint different model parameter space

LSTC: large phase space excluded (CDF anomaly excluded) $m(\rho_T/\omega_T)$ excluded between 250 – 850 GeV, $m(\pi_T)$ 50 – 800 GeV

Minimal Walking ĝ-M_A plane

No excess observed \rightarrow 95% CL limits on the σB vs mass for the R₁ resonance. 1D limits translates in exclusion region in the \hat{g} -M_A plane, scanning different \hat{g} hypothesis:

<u>Conclusion</u>

- TC models used as benchmark for ATLAS searches in different final states
- Search for <u>WZ resonant</u> structure in m_T (WZ) distribution using 1 fb⁻¹ of data

(Phys.Rev. D85 (2012) 112012)

- No discrepancy from SM expectation \rightarrow LSTC ρ_T technimesons with masses below 467 GeV are excluded at 95% CL for $m_{aT} = 1.1^* m_{\rho T}$ using the PYTHIA implementation of ρ_T production.
- Also exclusion limits on the $(m_{\pi T}: m_{\rho T})$ plane are set.
- Search of new resonance in <u>dilepton spectrum</u> within two TC scenario the LSTC and the MWT. (submitted to JHEP: arXiv:1209.2535).
 - No evidence for a TC signal is observed in 5 fb⁻¹ of data recorded in 2011 and 95% C.L limits are set for both the TC models.
 - \rightarrow LSTC: m(ρ_T/ω_T) excluded below 850 GeV
 - → MWT: \hat{g} -M_A parameter space is excluded for M_A between 360 1500 GeV for \hat{g} values corresponding to 6 and 2, respectively.

Thanks!

ATLAS Exotics Searches* - 95% CL Lower Limits (Status: LHCC, Sep 2012)

	Large ED (ADD) : monojet + E _{7,miss}	L=1.0 fb ⁻¹ , 7 TeV [ATLAS-CONF-2011-096]		3.39 TeV M _D (δ=2)	1
	Large ED (ADD) : monophoton + E _{7,miss}	L=4.6 fb ⁻¹ , 7 TeV [1209.4625]	1.93 TeV	$M_D (\delta=2)$	ATI AS
1S	Large ED (ADD) : diphoton, m _{yy}	L=4.9 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-087]		3.29 TeV M _S (GRW cut	-off, NLO) Preliminary
0	UED : diphoton + E _{7,miss}	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-072]	1.41 TeV Cor	mpact. scale 1/R	riciniidary
ns	RS1 with k/M _{Pl} = 0.1 : diphoton, m _{yy}	L=4.9 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-087]	2.06 TeV	Graviton mass	ſ
ne	RS1 with $k/M_{Pl} = 0.1$: dilepton, m_{\parallel}	L=4.9-5.0 fb ⁻¹ , 7 TeV [1209.2535]	2.16 Te	Graviton mass	$Ldt = (1.0 - 6.1) \text{ fb}^{-1}$
	RS1 with $k/M_{Pl} = 0.1$: ZZ resonance, $m_{IIII / IIII}$	L=1.0 fb ⁻¹ , 7 TeV [1203.0718]	845 Gev Graviton m	ass	J .
m,	RS1 with $k/M_{Pl} = 0.1$: WW resonance, $m_{T, v v}$	L=4.7 fb ⁻¹ , 7 TeV [1208.2880]	1.23 TeV Gravi	ton mass	is = 7, 8 TeV
X	RS with BR($g_{KK} \rightarrow tt$)=0.925 : $tt \rightarrow l+jets, m_{t,boosted}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-136]	1.9 TeV	KK gluon mass	
Ц	ADD BH $(M_{TH} / M_D = 3)$: SS dimuon, $N_{ch. part.}$	L=1.3 fb ⁻¹ , 7 TeV [1111.0080]	1.25 TeV M _D (8	5=6)	
	ADD BH ($M_{TH}/M_{D}=3$) : leptons + jets, Σp_{T}	L=1.0 fb ⁻¹ , 7 TeV [1204.4646]	1.5 TeV M	_ (δ=6)	
	Quantum black hole : dijet, F _y (m _{jj})	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-038]		4.11 TeV M _D (δ=6)	
	qqqq contact interaction : χ(m)	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-038]		7.8 TeV	\
5	qqll CI : ee, μμ combined, m̈́	L=1.1-1.2 fb ⁻¹ , 7 TeV [1112.4462]		10.2 Te	 A (constructive int.)
	uutt CI : SS dilepton + jets + E _{7.miss}	L=1.0 fb ⁻¹ , 7 TeV [1202.5520]	1.7 TeV	1	
	Z' (SSM) : m _{ee/uu}	L=5.9-6.1 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-129]	2.49	rev Z' mass	
	Z' (SSM) : m _{et}	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-067]	1.3 TeV Z' m	ass	
-	W' (SSM) : m _{T.e/u}	L=4.7 fb ⁻¹ , 7 TeV [1209.4446]	2.55	TeV W' mass	
\geq	W' (\rightarrow tq, g _p =1): m_{tq}	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-096] 350 Ge	V W' mass		
	$W'_{R} (\rightarrow tb, SSM) : m_{tb}$	L=1.0 fb ⁻¹ , 7 TeV [1205.1016]	1.13 TeV W' mas	SS	
	W* : m _{Te/u}	L=4.7 fb ⁻¹ , 7 TeV [1209.4446]	2.42 T	ev W* mass	
З	Scalar LQ pairs (β=1) : kin. vars. in eejj, evjj	L=1.0 fb ⁻¹ , 7 TeV [1112.4828]	660 Gev 1 st gen. LQ ma	SS	
	Scalar LQ pairs (β=1) : kin. vars. in μμjj, μvjj	L=1.0 fb ⁻¹ , 7 TeV [1203.3172]	685 GeV 2 nd gen. LQ m	ass	
\$	4 th generation : t't'→ WbWb	L=4.7 fb ⁻¹ , 7 TeV [Preliminary]	656 GeV ť mass		
Ϋ́Ε.	4^{th} generation : b'b'($T_{s,3}T_{5/3}$) \rightarrow WtWt	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-130]	670 GeV b' (T) mass		
ŝ	New quark b' : b'b'→ Zb+X, m _{zb}	L=2.0 fb ⁻¹ , 7 TeV [1204.1265] 400 0	ev b' mass		
2	Top partner : TT \rightarrow tt + A ₀ A ₀ (dilepton, M ₁₂)	L=4.7 fb ⁻¹ , 7 TeV [1209.4186] 4	B3 GeV T mass (m(A_) < 10	00 GeV)	
e	Vector-like quark : CC, m	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137]	1.12 TeV VLQ m	ass (charge -1/3, coup	$k_{qQ} = v/m_Q$
2	Vector-like quark : NC, m	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137]	1.08 TeV VLQ ma	ass (charge 2/3, coupli	$ng \kappa_{q0} = v/m_0$
s a	Excited quarks : γ-jet resonance, m	L=2.1 fb ⁻¹ , 7 TeV [1112.3580]	2.46 1	ev q* mass	
<u>o</u> 19	Excited quarks : dijet resonance, m	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-088]		3.66 TeV q* mass	
2 2	Excited electron : e-γ resonance, m	L=4.9 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-008]	2.0 TeV	e* mass (Λ = m(e*))	
Цæ	Excited muon : μ-γ resonance, m	L=4.8 fb ⁻¹ , 7 TeV IATLAS-CONF-2012-0081	1.9 TeV	\mathfrak{u}^* mass ($\Lambda = \mathfrak{m}(\mathfrak{u}^*)$)	
	Techni-hadrons (LSTC) : dilepton, m _{ee/uu}	L=4.9-5.0 fb ⁻¹ , 7 TeV [1209.2535]	850 GeV ρ ₊ /ω _τ mass	$m(m(\rho_T/\omega_T) - m(\pi_T) = M$	(₁)
	Techni-hadrons (LSTC) : WZ resonance (vIII), m	L=1.0 fb ⁻¹ , 7 TeV [1204.1648] 4	B3 GeV ρ_{τ} mass $(m(\rho_{\tau}) = m)$	$m(\pi_{T}) + m_{W}, m(a_{T}) = 1.1 m_{W}$	m(ρ _τ))
je l	Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ , 7 TeV [1203.5420]	1.5 TeV N	mass (m(W_) = 2 TeV)	
Off	W _R (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ , 7 TeV [1203.5420]	2.4 T	W _R mass (m(N) <	1.4 TeV)
	$H_{L}^{\pm\pm}$ (DY prod., $BR(H_{\mu}^{\pm\pm}\rightarrow\mu\mu)=1$) : SS dimuon, m_{μ}	L=1.6 fb ⁻¹ , 7 TeV [1201.1091] 355 Ge	H ^{±±} mass		-
	Color octet scalar : dijet resonance, $\ddot{m}_{\scriptscriptstyle \parallel}^{\mu}$	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-038]	1.94 TeV	Scalar resonance ma	sβ
		10 ⁻¹	1		10 10
		10			10 10

*Only a selection of the available mass limits on new states or phenomena shown

Backup slides

Object reconstruction in ATLAS

• <u>Muon</u>:

- Combined track: inner taker + Muon spectrometer
- Track Isolation

Electron:

- ID cuts on track and shower shape
- Calo Isolation

• <u>MET</u>:

- |η|<4.5
- Culated from all Calo-clusters + the muon transverse momentum for events in the muon channel.
- Calibration is applied to each calorimeter cluster to correct for energy loss in uninstrumented regions and for the different response of the calorimeters to hadron and electromagnetic shower components
- <u>JETs</u>:
- Reco from calorimeter clusters using the anti-kt algorithm (radius parameter 0.4).
- The jet energy is calibrated to account for the different response of the calorimeters to electrons and hadrons and for energy losses in un-instrumented regions.

The LHC and the ATLAS detector

LHC proton-proton collider

• 2012 run √s =8 TeV

\rightarrow ~ 30fb⁻¹ expected by the end data-taking

- <u>Muon</u>:
- Combined track: inner taker + Muon spectrometer
- Track Isolation
- Electron:
- ID cuts on track and shower shape
- Calo Isolation
- <u>MET</u>:
- |η|<4.5
- Culated from all Calo-clusters + the muon transverse momentum for events in the muon channel.
- <u>JETs</u>:
- Reco from calorimeter clusters using the anti-kt algorithm (radius parameter 0.4).

The LHC and the ATLAS detector

LHC proton-proton collider

LSTC PYTHIA parameters

TCSM Parameter choice:

• Techni-isospin symmetry \rightarrow isotriplet $\rho_{_T}$ and the isosinglet $\omega_{_T}$ degenerated in mass

- $M(\rho_{T}) = M(\omega_{T})$ - $M(a_{T}) > \hat{10\%} M(\rho_{T})$

• Isotriplet of technipions \rightarrow nearly degenerated , masses not small

- M(π_{T}) = M(ρ_{T}) - m(W) $\rightarrow \rho_{T}, \omega_{T} \rightarrow \pi_{T}W$ allowed

$\rho_{I} \rightarrow WZ \text{ decay in Pythia}$

- The ρ_{T} meson is expected to decay predominantly to longitudinally polarized W and Z bosons, similarly to the massive W' boson
- Pythia implementation of $\rho_{_T} \to$ WZ does not account for the vector boson polarization in their decay
- Spin correlations have been taken into account for W' in Pythia
- Choose to set ρT cross section limits using A×ε for ρ_T calculated
 1) Using the default pythia implementation of ρ_T
 2) Assuming A×ε for W' works also for ρ_T, also theoretically we

expect similar angular distribution and acceptance for W' and $\rho_{_{T}}$

<u>MWT model parameters:</u>

- \rightarrow bare axial and technivector masses: MA and MV ;
- \rightarrow ĝ, the strength of the spin one resonance interaction;
- \rightarrow S, the S-parameter obtained using the zeroth Weinberg Sum Rule;
- \rightarrow mH, Higgs boson mass;
- \rightarrow s, coupling of Higgs boson to composite spin-1 states.
 - the Higgs boson mass is mH = 200 GeV
 - s = 0
 - the S-parameter set to S = 0.3

Diboson search systematic uncertainty

- Lepton systematics: energy/momentum scaling and smearing, reco/id efficiency, isolation
- MET systematics: resolution, in-time and out-of-time pileup
- PDF uncertainty on new physics signal acceptance
- Luminosity uncertainty
- Trigger efficiency
- Correlations between different channels

ATLAS-EXOT-2012-01-001

Search for resonances in I+I- channel

- High Mass Dilepton Resonances paper
- Looking for <u>high-mass</u> resonances in the dielectron and dimuon invariant mass spectrum
- If no significant excess found:
 95% C.L. limits are set using a
 Bayesian approach, flat prior in σ*B

-Several 1D and 2D limit plots to constrain different parameters in the phase-space for each model

Data and MC samples Total Integrated Luminosity [fb ⁻¹] ATLAS Online Luminosity $\sqrt{s} = 7 \text{ TeV}$ LHC Delivered 6 ATLAS Recorded

Channel	Luminosity
Electron	4.91 fb ⁻¹
Muon	4.99 fb ⁻¹

SM Backgrounds

Process	σB (pb)	Generator [PDF]	Order and corrections
Ζ/γ*	990	PYTHIA [LO**]	with mass-dependent NNLO QCD and EW k-factors
tt _{bar}	165	MC@NLO [NLO]	scaled to NNLO cross-section
WW, WZ, ZZ	70	HERWIG [LO**]	scaled to NLO cross-section
W+jets QCD Multijets	1*10 ⁴ —	Data-driven/ALPGEN [LO**] Data-driven	– /scaled to NNLO cross- section

ATLAS-EXOT-2012-01-001

Search for resonances in I+I- channel

- Looking for <u>high-mass TC resonances</u> in the dielectron invariant mass spectrum
 - Backgrounds:
 - Drell-Yan (dominant & irreducible)
 - Diboson, ttbar
 - W+jets, QCD multijets

m_{ee} (GeV/c²)

Process	σB (pb)	Generator [PDF]	Order and corrections
Ζ/γ*	990	PYTHIA [LO**]	with mass-dependent NNLO QCD and EW k-factors
tt _{bar}	165	MC@NLO [NLO]	scaled to NNLO cross-section
WW, WZ, ZZ	70	HERWIG [LO**]	scaled to NLO cross-section
W+jets QCD Multijets	1*10 ⁴ _	Data-driven/ALPGEN [LO**] Data-driven	– /scaled to NNLO cross-section

 If no significant excess found above the SM expectation: 95% C.L. limits are set using a Bayesian approach

ATLAS-EXOT-2012-01-001

Search for resonances in I+I- channel

<u>Signal MC</u>

Process	Generator	Order and corrections
Technicolor	PYTHIA LO** Madgraph LO	with mass-dependent NNLO QCD and EW k-factors

TC resonances couple to lepton pairs through the Drell-Yan process

→ weighting procedure is developed starting from the DY continuum to create the signal reconstructed MC samples

Dilepton search Systematic uncertainty

- Normalization to Z peak in both channels
 - Cancels out mass independent systematics
- Contributions < 3% give negligible contribution in the limit settings

m_{*ll*} = 200 GeV

Source	Dielectrons		Dimuons	
	Signal Background		Signal	Background
Normalization	5%	NA	5%	NA
PDF/α_s /scale	NA	4%	NA	4%
W + jets and QCD background	NA	7%	NA	-
Total	5%	8%	5%	4%

$m_{\ell\ell} = 1 \text{ TeV}$

Source	Di	electrons	Dimuons		
	Signal Background		Signal	Background	
Normalization	5%	NA	5%	NA	
PDF/α_s /scale	NA	7%	NA	7%	
Efficiency	-	-	3%	3%	
W + jets and QCD background	NA	12%	NA	-	
Total	5%	14%	6%	8%	

Bayesian Statistical Method

Bayesian approach to compare m_{μ} distributions from data to the SM backgrounds and signal templates for each model:

• For each test mass, we use the binned Poisson likelihood

$$L(N_{X}, N_{Z} | data) = \prod_{k=1}^{N_{bin}} \frac{(N_{X} + N_{bg})_{k}^{N_{k}^{obs}} e^{-(N_{X} + N_{bg})_{k}}}{N_{k}^{obs} !}$$

- Systematic uncertainties are incorporated in the likelihood via nuisance parameters, which are integrated out
- Setting limits
 - 95% CL interval on N(X)
 - Converted into 95% CL limits on $\sigma B(X)$

$$\sigma B(X) = \sigma B(Z) \frac{N_X \mathcal{A}\epsilon(Z)}{N_Z \mathcal{A}\epsilon(X)},$$

Dilepton Search for a signal

- use 2D maximum likelihood fit to find most probable M $_{
m TC}$ and $\sigma_{
m TC}$

LLR

P-value: is the probability of observing an outcome at least as signal-like as the one observed in data, assuming that a signal is absent.

get p-value by comparing to pseudo-experiments

- electrons: p = 32%, muons: p = 63%, combined 35%
- ---> No significant excess found
- ---> Setting limits

Summary - Technicolor

- Technifermions strongly interacting at the weak scale break the weak symmetries to $U(1)_{\rm EM}$ W's and Z's become massive
- At ~ LHC energies, composite states of technifermions such as techni-rhos, ... should appear
- ATLAS search:
 - Low Scale TC Model
 - Minimal Walking TC
- Main differences between the two models :
 - Representations (ajoint for MWTC, fundamental for LSTC) and gauge groups (SU(2) vs SU(4)) are different for two models
 - Number of techni-quark doublets is $N_D^{MWTC}=1$ and $N_D^{LSTC}>1$ (~5)
 - Many more new techni-particles would be produced in LSTC
 - Energy scale: MWTC = v_{EW} and $F^{LSTC} = v_{EW} / \sqrt{N_D} < v_{EW}$

Limit on the MWT model

95% CL limits on the σB vs mass for the MWT models: Different ĝ hypothesis: benchmark

Minimal Walking <u>ĝ</u>-M_A plane

\tilde{g}	6	5	4	3	2
Observed limit [GeV]	359	485	768	1175	1566
Expected limit $[GeV]$	352	516	742	1233	1605

First direct limit in the \hat{g} -M_A plane

<u>Conclusion</u>

- TC models used as benchmark for ATLAS searches in different final states
- Search for <u>WZ resonant</u> structure in m_T (WZ) distribution using 1 fb⁻¹ of

data (Phys.Rev. D85 (2012) 112012)

- No discrepancy from SM expectation \rightarrow Using the mass hierarchy assumption $m_{\rho T} = m_{\pi T} + m_W$, LSTC ρ_T technimesons with masses from 200 GeV up to 467 GeV and 456 GeV are excluded at 95% CL for $m_{\alpha T} = 1.1 m_{\rho T}$ and $m_{\alpha T} \gg m_{\rho T}$ respectively using the PYTHIA implementation of ρ_T production. Also exclusion limits on the $(m \pi_T; m \rho_T)$ plane are set.
- Search of new resonance in <u>dilepton spectrum</u> within two TC scenario the LSTC and the MWT. (submitted to JHEP: arXiv:1209.2535).
 - No evidence for a TC signal is observed in 5 fb⁻¹ of data recorded in 2011 and 95%
 C.L limits are set for both the TC models.
 - \rightarrow LSTC: m(pT/ ω T) excluded between 250 850 GeV
 - \rightarrow MWT: \hat{g} -M_A parameter space is excluded for M_A between 360 GeV and 1.5 TeV for
 - ĝ values corresponding to 6 and 2, respectively.