The TIANSHAN RADIO EXPERIMENT FOR NEUTRINO DETECTION

IN2P3 (Ardouin, Carloganu, Charrier, Lautridou, Martineau-Huynh, Niess, Ravel) NAOC (Thomas Saugrin, Wu XiangPing, Zhao Meng) IHEP (Hu HongBo, Gou QuanBu, Zhang Jilong, Zhang Yi)

aris,14/09/2010

Olivier Martineau-Huynh

The TREND site

 Ulastai, Tianshan mountains, XinJiang autonomous province (2650m asl)

The electromagnetic environement

Extremely clean radio environement above 20MHz.

DAQ

3 km

South

The topology

3.5

3

2.5

2

1.5

1

0.5

0

Detector at the cross point of 2 high altitude valleys. Surrounded by close (5-20 kms) and high (>4000m) mountains

The TREND project

Take advantage of

- elm environement
- 21CMA infrastructures & staff
- topology

to set up an **autonomous radio array aiming at UHE neutrino detection**.

 Design baseline is 1 antenna connected to each pod (80 antennas over ~5km²)... but evolution is possible!

Neutrino sensitivity simulation

- v DIS:
 - Integrated cross sections (NC+CC) from Gandhi et al. (CTEQ4-DIS)
 - Inelasticity randomised with Pythia + CTEQ5d pdf.
 - τ propagation in rocks (energy loss + lifetime):
 - τ photonuclear interactions coded in GEANT4 following Dutta et al. (dominant energy loss process for UHE τ's)
 - Detailed simulations of the τ energy loss in rocks with GEANT4 for various τ initial energies ⇒ parametrization of the τ energy loss and of the proper time spectra according to the distance d (0-60 km) and the initial energy, E₀.
 - Hybrid Monte-Carlo scheme for the τ propagation in rocks (energy loss, decay) according to the parametrization derived from GEANT4.
 - τ Decays
 - Use Pythia + TAUOLA

No simulation for radio detection yet

- (Very optimistic) hypothesis of 100% efficiency if :
 - Decay point in direct view of detector
 - At least one pod (= 1 antenna) <1km from shower axis.
 - At least one pod (\equiv 1 antenna) < 30° from τ decay point.

Cross sections

Exposure obtained by integration over (θ,ϕ) of cross section $\sigma(E)$.

Flux limit

90%CL limit assuming flux $\phi = \phi_0 / E^2$ and <u>no</u> <u>candidate</u> within 4 years (& 0 background expected)

Background rejection requires a detailed study

 Badly reconstructed «standard» CR showers - Mountain act as a screen for $\theta > 75^{\circ}$. \sim bkgnd events correspond to ~ $5\sigma_{A}$ reconstruction error at least (with $\sigma_{\theta} \sim 3^{\circ}$). Expected number: few /year. - Lateral profiles (young / old showers) Anthropic sources at ground level - Signal polarity (linear for CR showers) - Lateral profile reconstruction.

- 2009: 6 antennas protype

 Test setup for principle
 validation.
 - 25 CR candidates detected.

March 2010: 15 antennas + 3 scintillators

• March 2010: 15 antennas + 3 scintillators - Cosmic ray detection validation - Several coincidences with 4 antennas & scintillators within a week (April 2010).

September 2010 : 50 antennas
 + 3 scintillators [in progress]

- Total detector area: ~2 km²

- Improve detector/environment understanding
- Study/develop background rejection
- Acquire data on (inclined) CR showers

West

North

* * * *

000000

*

*

So

East

Conclusion

TREND

- 1rst demonstration of autonomous radio detection after $1\frac{1}{2}$ year of work only.

- Benefits from:

- extremely favorable elm environement
- extremely favorable topology
- infrastructures & full support from 21CMA
- nations nee Potentially a well adaptated technic rino sensitivity (radio promising for incline rejection to be refined (radio inclined showers+bkgnd

ritive neutrino

to make it a poten. Neu detector for $E_v > 10^{16}$

backup

TREND Prototype setup

50-200MHz filter

50-100MHz filter

84dB

64dB

pod

optical fiber 🏼 🥢

optical fiber

21CMA acquisition

DAQ room 200MHz ADC +CPU+disk

TREND acquisition

Trajectories

North incidence

Toy Experiment

- Incoming v_{τ} of energy E_{v} normal to a rectangular wall of rocks.
- Look for τ 's decaying in the air after the wall.

Compute

- The conversion efficiency to τ leptons decaying in the air.
- The energy spectrum of τ leptons at decay.
- The flight distance in the air of the decaying τ leptons.

GEANT4: τ Energy Loss

GEANT 4: τ Energy Loss and Proper Time Distributions

Conversion Efficiency as Rock Depth

Trade to play between the stopping of the ν in the rocks and the escape of the τ out of the rocks.

τ Energy Spectrum for 30 km Rocks

τ Flight Distance Spectrum for 30 km Rocks

Above 10¹⁸eV, the flight distance only slightly increases with the primary energy.