

Comprendre le monde, construire l'avenir®

Heavy quarkonium production in UPC/Diffractive reactions

Daniel Tapia Takaki For SaporeGravis

1st SaporeGravis day - Research European network Joliot-Curie Auditorium, Orsay, France, 23 November 2012

Plan of this talk

Colliding systems

- proton-proton
- •lead-lead
- proton-lead

Summary

Proton-proton collisions

Feynman diagram; exclusive dimuon final states

$p+p \rightarrow p + X + p$ First LHC studies by LHCb-CONF-2011-022

Non-exclusive J/ψ

Additional final states particles due to proton dissociations or additional gluon radiations

CDF results

CDF - Phys. Rev. Lett. 102, 242001 (2009)

- Integrated luminosity: 1.48 fb⁻¹
- Total µµ events: 402
- $\mu\mu$ in the barrel (y=0): $|\eta| < 0.6$
- η coverage:
 - $|\eta|$ <3.6 EM calorimeter
 - $3.6 < |\eta| < 5.2 lead liquid scintillator calorimeter$
 - $3.4 < |\eta| < 4.7 Cherenkov counters$
 - $|\eta| < 7.4 Beam$ shower scintillator counters
- Good η coverage allowed to reject background contributions.
- Good calorimetry allowed to separate χ_{c0} contribution
- $y=0 \rightarrow x \sim 10^{-3}$ consistent with HERA results
- •
- $\gamma + p \sim 100 \text{ GeV}$

Channel	# Events	dơ/dy (y=0), nb
]/ψ	286	3.92 ± 0.25 ± 0.52
Ψ'	39	0.53 ± 0.09 ± 0.10
χ_{c0}	65	$76 \pm 10 \pm 10$

CDF results

CDF - Phys. Rev. Lett. 102, 242001 (2009)

Small x gluon physics

- V. Rebyakova, M. Strikman and M. Zhalov. *LHC potential for study of the small x gluon physics in ultraperipheral collisions of 3.5 TeV protons*, Phys. Rev. D81, 031501(R) (2010)
- Coherent J/ ψ production: pp \rightarrow ppJ/ ψ :

LHCb - Exclusive χ_c

	$\sigma(pp \rightarrow pp(J/\psi + \gamma))$ LHCb (pb)	SuperCHIC prediction (pb)
<i>χc</i> 0	9.3 ± 4.5	14
<i>χ</i> c1	16.4 ± 7.1	10
χ_{c2}	28 ± 12.3	3

*Challenging measurement at the LHC *Large theoretical errors *Could be used as a standard central diffraction candle, useful for exclusive Higgs production

Odderon production

Exclusive J/Ψ and Υ hadroproduction

and the QCD odderon

Lech Szymanowski

Ecole Polytechnique, Palaiseau, Soltan Inst. for Nucl. Studies, Warsaw Lech et al. Phys Rev D. 75. 094023

• Puzzle:

16 July 2011

QCD \rightarrow TWO colour singlet reggeons with intercepts around 1: POMERON (C = 1) $\sigma_{AB} + \sigma_{\bar{A}B}$

> **ODDERON** (C = -1) $\sigma_{AB} - \sigma_{\bar{A}B}$ which still escapes experimental verification

Odderon was introduced more than 30 years ago

L. Lukaszuk and B. Nicolescu, Lett. Nuovo Cim. 8 (1973) 405

it was often considered as a "heretic and doubtful concept" C. Ewerz

naive Pomeranchuk thm: $\Delta \sigma = \sigma_T^{\bar{p}p} - \sigma_T^{pp} \to 0$, for $s \to \infty$

too strong assumptions in the proof (no odderon)

Odderon production

Lech et al. Phys Rev D. 75. 094023

• γ -P and P-O ampl. do not interfere in our approx. \rightarrow they can be treated independently CDF - Phys. Rev. Lett. 102, 242001 (2009) If the J/ψ and $\psi(2S)$ cross sections were larger than expected for photoproduction, it would be evidence for odderon exchange. If we assume a theoretical value of $\frac{d\sigma}{dy}|_{y=0}(J/\psi) = 3.0\pm0.3$ nb for photoproduction ($\gamma I\!P \rightarrow$ J/ψ), compatible with the predictions, we can place a 95% C.L. upper limit $\frac{d\sigma}{dy}|_{y=0}(J/\psi) < 2.3$ nb for odderon

Daniel Tapia Takaki 1st **SaporeG**exchange $(OIP \rightarrow J/\psi)$.

UPC Pb-Pb

Daniel Tapia Takaki 1st **SaporeGravis day** – Orsay, France 23 November 2012

Why ultra-peripheral heavy-ion collisions

Two ions (or protons) pass by each other with impact parameters b > 2R. **Hadronic interactions are strongly suppressed**

Number of photons scales like Z^2 for a single source \Rightarrow exclusive particle production in heavy-ion collisions dominated by electromagnetic interactions. The virtuality of the photons $\rightarrow 1/R \sim 30 \text{ MeV}/c$

Why ultra-peripheral heavy-ion collisions

Two ions (or protons) pass by each other with impact parameters b > 2R. **Hadronic interactions are strongly suppressed**

Number of photons scales like Z² for a single source \Rightarrow exclusive particle production in heavy-ion collisions dominated by electromagnetic interactions. The virtuality of the photons $\rightarrow 1/R \sim 30$ MeV/*c*

Coherent production:

Photon couples coherently to all nucleons $<p_{\tau}>\sim60MeV/c$; target nucleus normally

does not break up

Incoherent production

Photon couples to a single nucleon Quasi-elastic scattering off a single nucleon $<p_{\tau}>\sim500 \text{ MeV}/c$

00000

 J/Ψ

Pb

Pb

Pb

Pb

Why J/ψ photo-production at LHC

Total J/ ψ cross section: 23 mb (STARLIGHT) vs 10.3 mb Rebyakova, Strikman and Zhalov

Models differ by the way photonuclear interaction is treated...

STARLIGHT *http://starlight.hepforge.org*

Adeluyi and Bertulani (AB) Phys. ReV. C 85 (2012) 044904

Goncalves and Machado (GM) Phys. ReV C 84 (2011) 011902

Cisek, Szczurek, Schafer (CSC) *Phys. ReV. C 86 (2012) 014905*

Rebyakova, Strikman and Zhalov (RSZ) Phys. Lett. B 710 (2012) 252 Five model predictions available – published in the last two years-

$$\frac{d\sigma}{dt}\Big|_{t=0} = \frac{\alpha_s^2 \Gamma_{ee}}{3\alpha M_V^5} 16\pi^3 [x_g(x, \frac{M_V^2}{4})]^2 \text{ Ryskin 1993}$$

$$\frac{\frac{d\sigma(\gamma A \rightarrow VA)}{dt}}{\frac{d\tau}{d\tau} = 0} = \left[\frac{G_A(x, M_V^2/4)}{G_N(x, M_V^2/4)}\right]^2$$

Why J/ψ photo-production at LHC

Total J/ ψ cross section: 23 mb (STARLIGHT) vs 10.3 mb Rebyakova, Strikman and Zhalov

Models differ by the way photonuclear interaction is treated...

STARLIGHT *http://starlight.hepforge.org*

Adeluyi and Bertulani (AB) Phys. ReV. C 85 (2012) 044904

Goncalves and Machado (GM) Phys. ReV C 84 (2011) 011902

Cisek, Szczurek, Schafer (CSC) *Phys. ReV. C 86 (2012) 014905*

Rebyakova, Strikman and Zhalov (RSZ) Phys. Lett. B 710 (2012) 252 Five model predictions available – published in the last two years-

Au+Au collisions at 200 GeV **PHENIX study:** PLB Vol 679, issue 4, p. 321-333

Exclusive J/ ψ analysis at forward rapidity

From a typical inclusive J/ψ candidate in Pb-Pb collisions...

....to an exclusive J/ψ candidate

First UPC measurement at LHC carried out by ALICE arXiv:1209.3715 [nucl-ex] 17 Septembre 2012 Submitted to PLB CERN Courier; Nov issue

p_{T} distribution for J/ ψ candidates

Daniel Tapia Takaki LHC Days in Split 2012 – Split, Croatia 2 October 2012

Theoretical predictions

<u>**1. AB-MSTW08 - No nuclear effects</u></u> All nucleons contribute to the scattering d\sigma/dt at t=0 scales with A²</u>**

2. STARLIGHT, CM and CSS Glauber approach to calculate the number of nucleons contributing to the scattering. Dependence on total J/ ψ -nucleon cross section

<u>3. Partonic models (AB-EPS08, AB-EPS09, AB-HKN07, RSZ-LTA)</u> Cross section proportional to the nuclear gluon distribution squared

Data vs theoretical predictions

<u>**1. AB-MSTW08 - No nuclear effects</u></u> All nucleons contribute to the scattering d\sigma/dt at t=0 scales with A^2</u>**

2. STARLIGHT, CM and CSS Glauber approach to calculate the number of nucleons contributing to the scattering. Dependence on total J/ ψ -nucleon cross section

<u>3. Partonic models (AB-EPS08, AB-EPS09, AB-HKN07, RSZ-LTA)</u> Cross section proportional to the

nuclear gluon distribution squared

Pb+Pb \rightarrow Pb+Pb+J/ ψ $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ da/dy (mb) ALICE a) AB-MSTW08 CSS NB-HKN07 STARLIGHT GM AB-EPS09 RSZ-LTA AB-EPSC -2 2 n ٧

Most forward J/ ψ s in UPC Pb-Pb at LHC are from low photon-proton c.m.s. energy **Either nucleus can serve as photon emitter or photon target, at forward rapidity** (-3.6<y<-2.6), x~10⁻² and x~10⁻⁵ The error is the quadratic sum of the statistical and systematic errors

Data vs theoretical predictions

Integrated cross section

Largest deviations (3σ): STARLIGHT and AB-MSTW08

Best agreement (1σ): RSZ-LTA, AB-EPS08 and AB-EPS09

Data vs theoretical predictions

J/Ψ photo-production in Pb-Pb Central Rapidity - pair-p_T

Left: di-electron channel, Right: dimuon channel.

6 Components:

- coherent+incoherent J/Ψ
- feed-down from coherent+incoherent Ψ'-decay
- hadronic J/ Ψ events, and continuum $\gamma \gamma \rightarrow e^+ e^- (\mu^+ \mu^-)$

	•	ㅁ › ㆍ @ › ㆍ 홈 › ㆍ 홈 › 3	<i><i>つ</i><i>Q<i>Q</i></i></i>
Christoph Mayer (CERN, IFJ)	ALICE J/Ψ UPC	21.11.2012	13 / 18
		2	3

One more thing in Pb-Pb...

Daniel Tapia Takaki 1st **SaporeGravis day** – Orsay, France 23 November 2012

UPC in pPb and Pbp

*Photon emission from Pb is dominant, but photons emitted from the proton that interacts with the nucleus is also possible

*Rapidity gaps between the nucleus and the produced particles

For a detailed review, See talk by D. D'enterria CERN, 17/10/2011

Photon flux scale $\rightarrow Z^2$ Targer scale $\rightarrow A^{2/3}$

Then, flux/target scale ~200

J/ψ photoproduction - Ppb and Pbp

Pb-p – low-x gluons from the proton (up to 10^{-5}) p-Pb – low-x gluons from Pb (up to 10^{-5}) $\sigma_{tot}(5030 \text{ GeV}) = 55 \text{ ub}$

Recent calculations by E. Kryshen and M. Zhalov, private communication

 \sqrt{s} = 5030 GeV, σ_{tot} = 55 ub, max shadowing, leading twists

Phys. Lett. B640, 162, 2006;

Frankfurt, Strikman, Zhalov, Large t diffractive J/psi photoproduction with proton dissociation in ultraperipheral pA collisions at LHC.

Phys. Lett. B 670, 32, 2008.

J/ ψ photoproduction - p_{T}

Daniel Tapia Takaki 1st **SaporeGravis day** – Orsay, France 23 November 2012

Upsilon photoproduction

 γ + p \rightarrow Y + p : possible thanks to strong photon flux of the proton hitting the Pb nuclues

Very limited statistics from HERA (H1 and ZEUS) ~ 100 candidates

Uncertainty in measured cross section larger than a factor 3

Ideal way to measure this process at LHC

Needed to have a baseline for

 $\gamma + Pb \rightarrow Y + Pb$

Ultra-Peripheral Collisions – Proton-nucleus collisions

Example: photoproduction of open charm in p+Pb collisions.

- Cross section for photoproducing D mesons around mid-rapidity $d\sigma/dy \approx 400 \ \mu b$.
- Plateau in forward direction from γ fluctuating to a ccbar-pair.

EDS Blois Workshop, Qui Nhon, Vietnam, 2011

Joakim Nystrand, University of Bergen

Summary

Heavy quarkonium production in UPC \rightarrow interesting in its own right, many observables/physics to look at

At LHC, the following analysis can be done

- -Energy dependence
- -Rapidity dependence
- -Collidying systems (pp, PbPb, pPb, Pbp)

J/ ψ , ψ , Y, χ_c and the two-photon production, and other channels not discussed here.

Additional slides

Coherent production?!

Four physics processes:

- Coherent J/ ψ
- Incoherent J/ ψ
- $-J/\psi$ from ψ' decays
- $-\gamma\gamma
 ightarrow \mu^+\mu^-$

Feed-down (f_D):

for example, ψ' decays to J/ $\psi \pi^+\pi^-$

$$f_D^P = \frac{\sigma_{\psi'} \cdot BR(\psi' \to J/\psi + \text{anything}) \cdot (\text{Acc} \times \varepsilon)_{\psi' \to J/\psi}^P}{\sigma_{J/\psi} \cdot (\text{Acc} \times \varepsilon)_{J/\psi}}$$

According to STARLIGHT

 $f_D^{NP} = 11.9\%, f_D^T = 9.3\%, f_D^L = 16.8\%$

According to RSZ

$$f_D^{NP} = 5.5\%, f_D^T = 4.3\%, f_D^L = 7.9\%$$

Thus, we took as the best estimate $f_D = (11\pm6)\%$

 $N_{\rm J/\psi}^{\rm coh} = \frac{N_{\rm yield}}{1 + f_I + f_D}$

Three polarisation scenarios for ψ^{\prime} decays were considered:

- No polarisation (NP)
- Full longitudinal polarisation (L)
- Full transverse polarisation (T)

J/ ψ Incoherent fraction (f₁)

According to STARLIGHT $f_I = 0.12^{\circ}$ According to RSZ $f_I = 0.08$

$$f_I = 0.26 \pm 0.05 \qquad f_I = 0.12^{+0.1}_{-0.0}$$

New at the LHC: Dependence on neutron emission

Using Zero Degree Calorimeters (ZDC) it is possible to select coherent production with ion excitation, where neutrons are emitted from at least one of the nuclei

0n1n and 0nXn: excitation and decay of one of the ions, and **0n0n:** no neutron emission

Rebyakova, Strikman and Zhalov Phys. Lett. B 710 (2012) 252

Daniel Tapia Takaki LHC Days in Split 2012 – Split, Croatia 2 October 2012

J/ψ photo-production at **central rapidity** Analysis ongoing – 2011 Pb-Pb data

Signal yield extraction

Exactly two oppositely charged muons

Coherent J/ ψ differential cross section

- **1. Uncertainty from higher order terms :** Photon coupling to the nuclei is $Z\alpha^{1/2}$ rather than $\alpha^{1/2}$. Here Z=82 Either negligible effect or a 16% reduction in the $\gamma+\gamma$ cross section
- 2. Uncertainty on minimum momentum transfer and nuclear form factor

3. Previous experimental results:

STARLIGHT predictions in good agreement to STAR/PHENIX measurements, but their experimental results have uncertainties between 20-30%

Theoretical uncertainty on $\gamma + \gamma \rightarrow \mu^+ \mu^-$ is 20%

ρ^0 photo-production at central rapidity – 2010 data

- Coherent production characterised by low transverse momentum of the final state, determined by the nuclear form factor, $p_T < \approx 100 \text{ MeV/c.}$

- Results after requiring no neutron emission using ZDCs, *i.e.* No neutron break-up
- Next step: Determine ρ⁰ photoproduction cross section

Daniel Tapia Takaki LHC Days in Split 2012 – Split, Croatia 2 October 2012

Quarkonia measurements at ALICE

Forward detectors used in this analysis: VZERO-A: 2.8< η <5.1 ; VZERO-C: -3.7< η <-1.7 m ZDC: 116 m on either side of the IP

ALICE can measure J/ ψ mesons down to zero p_{τ}

Summary and conclusions

- **ALICE** has made the first LHC measurement on J/ψ photoproduction in ultra-peripheral Pb-Pb collisions at 2.76 TeV, per nucleon pair
- Coherent J/ψ differential cross section

 $d\sigma_{J/\psi}^{\rm coh}/dy = 1.00 \pm 0.18(\text{stat})_{-0.26}^{+0.24}(\text{syst}) \text{ mb}$

-3.6<y<-2.6 p_τ<0.3 GeV/*c*

 <u>AB-MSTW08 is strongly disfavoured</u>. It assumes that the forward scatting cross section scales with the number of nucleons squared. <u>STARLIGHT cross section is also</u> <u>disfavoured</u>

arXiv:1209.3715 [nucl-ex] 17 Septembre 2012 Submitted to PLB

 <u>Best agreement is found with models that include nuclear</u> <u>gluon shadowing (RST-LTA, AB-EPS08, AB-EPS09)</u>