Review on Experimental results on Heavy Flavor production

Zaida Conesa del Valle (CERN & IPHC/CNRS-IN2P3) 1st Sapore Gravis Day Meeting - Orsay - November 2012

> Disclaimer: biased view towards LHC, ALICE, friends,...

OUTLINE

- * Introduction : general ideas, concepts...
- * Highlights of pp measurements
- * Snapshot of pA data
- * Results in AB collisions:
 - ► Nuclear modification factor: electrons, muons, D^0 , D^+ , D^{*+} , D_{s^+} , $B \rightarrow J/\psi$
 - Azimuthal anisotropy:
 - v_2 : electrons, D^0 , D^+ , D^{*+}
 - $D^0 v_2 v_3$. centrality and $R_{AA} v_3$ Event Plane
- * Summary

Experiments and some concepts

KEYWORDS: HEAVY QUARKS AS QGP PROBES

- Production in nucleon-nucleon collisions
 - Production time tp ~ 0.05 0.15 fm/c
 - Tool to test pQCD calculations
- * Nuclear medium influence: p-A collisions
 - Shadowing (PDF modifications in nuclei) and Gluon saturation
 - Tool to study high density small-x gluons
- * Effects in a QGP: A-B collisions
 - Energy loss in the QGP (high pt)
 - Thermalisation in the QGP (low pt)
 - Probe of the QCD medium

Cartoons just for illustration

[Dokshitzer and Kharzeev, PLB 519 (2001) 199. Armesto, Salgado, Wiedemann, PRD 69 (2004) 114003. Djordjevic, Gyulassy, Horowitz, Wicks, NPA 783 (2007) 493...]

Z. Conesa del Valle

KEYWORDS: HEAVY QUARKS AS QGP PROBES

- Production in nucleon-nucleon collisions
 - Production time tp ~ 0.05 0.15 fm/c
 - Tool to test pQCD calculations
- * Nuclear medium influence: p-A collisions
 - Shadowing (PDF modifications in nuclei) and Gluon saturation
 - Tool to study high density small-x gluons
- * Effects in a QGP: A-B collisions
 - Energy loss in the QGP (high pt)
 - Thermalisation in the QGP (low pt)
 - Probe of the QCD medium

Cartoons just for illustration

[Dokshitzer and Kharzeev, PLB 519 (2001) 199. Armesto, Salgado, Wiedemann, PRD 69 (2004) 114003. Djordjevic, Gyulassy, Horowitz, Wicks, NPA 783 (2007) 493...]

Z. Conesa del Valle

Sapore Gravis 2012,: 23 November 2012

KEYWORDS: HEAVY QUARKS AS QGP PROBES

- Production in nucleon-nucleon collisions
 - Production time tp ~ 0.05 0.15 fm/c
 - Tool to test pQCD calculations
- * Nuclear medium influence: p-A collisions
 - Shadowing (PDF modifications in nuclei) and Gluon saturation
 - Tool to study high density small-x gluons
- * Effects in a QGP: A-B collisions
 - Energy loss in the QGP (high pt)
 - Thermalisation in the QGP (low pt)
 - Probe of the QCD medium

[Dokshitzer and Kharzeev, PLB 519 (2001) 199. Armesto, Salgado, Wiedemann, PRD 69 (2004) 114003. Djordjevic, Gyulassy, Horowitz, Wicks, NPA 783 (2007) 493...]

EXPERIMENTALLY, HOW ?

SPS at CERN

RHIC at BNL

The LHC at CERN

... THE MEASUREMENTS

* In proton-proton collisions...

	PHENIX	STAR	ALICE	ATLAS	CMS	LHCb
HF electrons	v	v	 ✓ 			
B-decay electrons	v		 ✓ 			
HF muons			 ✓ 			
D ⁰ , D ⁺ , D ^{*+}		v	 ✓ 	v	v	 ✓
D_s^+			 ✓ 	v	v	 ✓
B→J/ψ			v	v	v	 ✓
B hadrons				v	v	 ✓
B jets				?	v	

* In heavy-ion collisions...

	PHENIX	STAR	ALICE	ATLAS	CMS	LHCb
HF electrons	v	v	 ✓ 			
B-decay electrons	~					
HF muons			 ✓ 	v	v	
D ⁰ , D ⁺ , D ^{*+}		v	 ✓ 			
D_{s}^{+}			 ✓ 			
B→J/ψ					v	
B hadrons						
B jets					 Image: A set of the set of the	

Proton-proton Results c.f. this morning in Jibo's He talk

Production in hard partonic collisions

• Production time $\tau_p \sim 1/m_Q \sim 0.05 - 0.15 \text{ fm/c}$

 \Rightarrow Tool to test pQCD calculations

CHARM & BEAUTY CROSS SECTIONS

- Their cross section evolution with $\int s$ is well described by pQCD.
- → ~560 µb × 950 collisions / 42mb ~ 13 cc pairs in 0-10% AuAu at 200 GeV
- → ~5 mb × 1500 collisions / 65mb ~ 115 cc pairs in 0-10% PbPb at 2.76 TeV

SEPARATING CHARM & BEAUTY

meson pt shape in-medium modification.

First direct measurements of the charm and beauty contributions to the heavy flavor lepton spectra in HI experiments.

CHARM(ONIA) MULTIPLICITY DEPENDENCE

- Charged particle multiplicity in high-multiplicity pp collisions at 7 TeV is larger than the multiplicity in the peripheral CuCu collisions at 200 GeV
- * Similar increase of prompt-D and J/ψ production vs multiplicity
- * No clear p_T dependence on the prompt-D relative yields vs multiplicity
- * Hints for multi-parton interactions at a hard scale in pp collisions

[ALICE Coll, Phys.Lett.B712 (2012) 165-175]

[B.Alveretal.(PHOBOS Coll.),Phys.Rev.C83,024913(2011).]

Z. Conesa del Valle

d-Au & Cu-Cu Results

$\sqrt{s_{\rm NN}} = 200 {\rm ~GeV}$

Nuclear environment influence: p-A collisions

Shadowing (PDF modifications in nuclei) and Gluon saturation
 Tool to study high density small-x gluons

HF ELECTRONS AT RHIC I

- No suppression observed for heavy flavor particles within uncertainties (flat-like shape & compatible with unity)
- * Largest difference within HFe and $\pi^0 R_{dAu}$ seen in the p_T range where cold-nuclear-matter effects are expected to be more important

HF ELECTRONS AT RHIC I

dAu 200 GeV

[PHENIX Coll, arXiv:1208.1293 (2012)]

- No suppression observed for heavy flavor particles within uncertainties (flat-like shape & compatible with unity)
- * Largest difference within HFe and $\pi^0 R_{dAu}$ seen in the p_T range where cold-nuclear-matter effects are expected to be more important

HF ELECTRONS AT RHIC I

dAu 200 GeV

- No suppression observed for heavy flavor particles within uncertainties (flat-like shape & compatible with unity)
- * Largest difference within HFe and $\pi^0 R_{dAu}$ seen in the p_T range where cold-nuclear-matter effects are expected to be more important

HF ELECTRONS AT RHIC II

- * Similar behavior to that of dAu for comparable <N_{part}>
- * Un-expected further suppression at forward rapidity. Similar effect to that observed for J/ψ ?

HF ELECTRONS AT RHIC II

- * Similar behavior to that of dAu for comparable <N_{part}>
- * Un-expected further suppression at forward rapidity. Similar effect to that observed for J/ψ ?

Pb-Pb & Au-Au Results $\sqrt{s_{NN}} = 200 \text{ GeV}$ and $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

Effects in a QGP: A-B collisions

- Thermalisation in the QGP (low p_T)
 - Medium transport properties
- ► Energy loss in the QGP (high p_T)
 - Medium density and size
 - Color charge (Casimir factor) : $\Delta E_{u,d,s} < \Delta E_g$
 - Parton mass (dead cone effect) : $\Delta E_b < \Delta E_c < ...$ \Rightarrow Probe of the QCD medium

 $\Rightarrow \Rightarrow Au-Au, Pb-Pb$

- \Rightarrow dN/dpt, RAA, v₂
- \Rightarrow dN/dpt, RAA, v₂
- \Rightarrow compare to light hadrons
- \Rightarrow compare c and b production

RHIC, HEAVY FLAVOR SUPPRESSION

AuAu 200 GeV

[STAR, P.R.L.98 (2007) 192301] [PHENIX, P.R.L.98 (2007) 172301]

Binary scaling of the total HQ-yields, R_{AuAu}(all p_T)~1

RHIC, HEAVY FLAVOR SUPPRESSION

Z. Conesa del Valle

HF MUONS AT LHC

- * Central to peripheral ratio at mid-rapidity by ATLAS, R_{CP}:
 - Systematic suppression with centrality
 - No pt dependence
- * Consistent results with published RAA at forward rapidity by ALICE

Suppression by a factor of 2-4 in 0-10%

HFE RAA AT RHIC AND LHC

- Similar magnitude of heavy flavor electron suppression at Js_{NN}=200GeV (PHENIX, RHIC) and Js_{NN}=2.76TeV (ALICE, LHC)
- * Caveat: c/b contribution to the HF electron spectra may differ at RHIC and LHC

STAR, INCLUSIVE D^o MESON RAA

Inclusive D⁰ mesons (c+b)

- Suppression by a factor of 2-2.5 of high pt D⁰ in the most central collisions,
- * while there might be an enhancement at low pt ?

Z. Conesa del Valle

ALICE, D^o, D⁺, D^{*+} D_s⁺ Mesons, 0-7.5%

- Suppression by up to a factor of 5 at pT ~10 GeV/c in 0-7.5%
- First measurement of prompt D_{s}^{+} in heavy ion collisions
- → D_{s^+} suppression similar to that of the D^0 , D^+ , D^{*+}

[ALICE Coll. arXiv:1203.2160 (2012)]

ZCdV, Grelli, Innocenti QM12

CMS, Non-Prompt J/ ψ

- * Centrality dependence of $B \rightarrow J/\psi R_{AA}$
 - ▶ 50-100%: factor ~1.4
 - ▶ 0-5%: factor ~2.5
- * Hint of less suppression at mid-rapidity
- * Hint of larger suppression at higher pt

PbPb 2.76 TeV

Mironov, Jo, QM12

LHC, $R_{AA} P_T$ DEPENDENCE I

ALI-DER-36850

- Similar HF decay e (|y| < 0.6) and μ (2.5<y<4.0) R_{AA} in 0-10%
- they are also comparable with D mesons R_{AA} (|y|<0.5) in 0-7.5% considering the semileptonic decay kinematics ($p_T^e \sim 0.5 p_T^B$ at high p_T)

[ALICE Coll. arXiv:1205.6443 (2012)]

PbPb 2.76 TeV

LHC, $R_{AA} P_T$ DEPENDENCE I

- Similar HF decay e (|y|<0.6) and µ (2.5<y<4.0) R_{AA} in 0-10%
- → they are also comparable with D mesons R_{AA} (|y|<0.5) in 0-7.5% considering the semileptonic decay kinematics ($p_T^e \sim 0.5 p_T^B$ at high p_T)
- → D R_{AA} shows a similar trend as charged particles and π^{\pm} in 0-10%

[[]ALICE Coll. arXiv:1205.6443 (2012)]

LHC, $R_{AA} P_T$ DEPENDENCE II

- * Different suppression pattern than charged particles at low pt
- * while at high pt the suppression is similar

PbPb 2.76 TeV

Mironov, Nguyen, QM12

LHC, RAA CENTRALITY DEPENDENCE

 In central collisions, for pt>6 GeV/c, non-prompt J/ψ (CMS) seem less suppressed than prompt D mesons, albeit the difference on the b/c average pt.

COLD NUCLEAR MATTER & HF RAA

PbPb 2.76 TeV

- ➡ HF decay µ & D mesons R_{AA} suppression in the most central collisions can not be explained by shadowing alone for p_T>4 GeV/c ⇒ likely a final state effect
 - ⇒ need pPb data to quantify initial state effects

MODELS DESCRIPTION OF RAA

Models predict quantitatively well both light, charm and beauty RAA

Z. Conesa del Valle

AZIMUTHAL ANISOTROPY

- * Heavy flavor is suppressed up to high $p_{T...}$ Azimuthal dependence?
- * Address path length dependence of HQ energy loss at high p_T ?
- * Collective motion (flow) at low p_T ?

$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} = \frac{N_0}{2\pi} \left(1 + 2v_1 \cos(\varphi - \Psi_1) + \frac{2v_2 \cos[2(\varphi - \Psi_2)]}{2\pi} + \dots\right)$$

HEAVY FLAVOR ELECTRON V2

- Non-photonic / HF electron v₂:
 - At 39 and 62 GeV consistent with zero within uncertainties
 - At 200 GeV, v₂>0 for p_T > 3 GeV/c
 - At 2.76 TeV, v₂>0 at low p_T (>3σ effect in 2<p_T<3 GeV/c)</p>

Z. Conesa del Valle

FURTHER INSIGHT AT LHC ?

- → Indication of non-zero D meson v_2 (3 σ effect in 2<p_T<6 GeV/c)
- ➡ Hint of centrality dependence at low p_T
- Larger suppression OutOfPlane than InPlane up to $p_T \sim 10 \text{ GeV/c}$
 - ▶ might indicate elliptic flow at low p_T
 - ▶ might indicate longer path length at high p_T

h length at high pr $v_{2} = \frac{1}{R_{2}} \frac{\pi}{4} \frac{N^{\text{In-Plane}} - N^{\text{Out-Ot-Plane}}}{N^{\text{In-Plane}} + N^{\text{Out-Ot-Plane}}} R_{2}: \text{ event plane resolution}$

ZCdV, Caffarri, QM12

Z. Conesa del Valle

R_{AA} & v₂ **comparison to models**

HF ELECTRON RAA & V2 AT RHIC

HF ELECTRON RAA & V2 AT LHC

PbPb 2.76 TeV

The simultaneous description of HFe RAA and v2 is challenging

D MESON RAA & V2 AT LHC

→ The simultaneous description of D mesons R_{AA} and v_2 is challenging

LHC, RAA OF OPEN AND HIDDEN CHARM

p_T≥6 GeV/c D (|y|<0.5) vs prompt J/ψ (CMS,|y|<2.4)</p>

Z. Conesa del Valle

Sapore Gravis 2012,: 23 November 2012

- \star Heavy flavor production is suppressed in the most central collisions
 - Light particles have a similar p_T and centrality trend than charm R_{AA}
 - Non-prompt J/ψ seem less suppressed than charged particles
- * Azimuthal anisotropy of HFe and charm observed
 - $v_2>0$ both for $p_T \sim 3$ GeV/c at RHIC and at the LHC
 - Hint of v_2 centrality dependence at low p_T (D⁰, ALICE)
- * HQ energy loss models reproduce reasonably well heavy flavor R_{AA} measurements. Challenging simultaneous description of R_{AA} and v_2 .

Thanks for your attention !

Special thanks to the organizers for the invitation and to A. Dainese for the help

Backup

DO MULTIPLICITY & PT DEPENDENCE

HF MULTIPLICITY DEPENDENCE

HF MULTIPLICITY DEPENDENCE

CORRELATION OF PT(B) & PT(D) VS PT(LEPTON)

PHENIX, SEPARATING CHARM & BEAUTY

* Identify electrons

Rosati, Nouicer, QM12

- * Fit the electron DCA distribution of inclusive electrons in pt bins and extract the charm and beauty fractions
 - Rely on MC templates of the different contributions
 - Photonic contribution evaluated with:
 a) cocktail method, b) conversion tagging in the VTX

PHENIX, CHARM & BEAUTY HF

Dixit Marzia "Bottom in Au+Au appears more suppressed" ?

Rosati, Nouicer, QM12

PHENIX, CHARM & BEAUTY HF RAA

Z. Conesa del Valle

ALICE, HF V₂

- Heavy flavor electron v2>0 at low pT (>3σ effect in 2<pT<3 GeV/c)</p>
- Consistency among D meson species (D⁰, D⁺, D^{*+})
- → Indication of non-zero D meson v_2 (3 σ effect in 2<p_T<6 GeV/c)

ZCdV, Sakai, QM12

CENTRALITY, THE GLAUBER MODEL

- * Glauber model : geometrical picture of the collision
 - The nucleons are distributed following a known density distribution function p(r) (Wood-Saxon), as a function of their radius, usually measured experimentally;
 - The nucleons travel in straight-line trajectories and their trajectory does not change while passing through the nucleus;
 - The nucleons interact with a nucleon-nucleon inelastic cross section, $\sigma_{NN}(Js_{NN})$, measured in pp collisions, where Js_{NN} is the energy available in the nucleon-nucleon (NN) center of mass. At 2.76TeV σ_{NN} =64±5 mb.

₩