

DIRAC User Group Meeting Oct. 29th – 31st 2012 Marseille, France

Interfacing the *Fermi*-LAT Dataprocessing Pipeline with Grid Services using

Stephan Zimmer (Stockholm)

On behalf the *Fermi*-LAT Collaboration with

A. Tsaregorodtsev, L. Arrabito and C. Lavalley

To appear in J.Phys.Conf.Proc (2012) (CHEP 2012, in press)

Outline

- The Fermi-LAT
- LAT Computing Requirements
 - Level 1 Data processing
 - Massive Monte Carlo Production
 - Data Reprocessing
- The Fermi-LAT Dataprocessing Pipeline
- Interfacing the Pipeline with the Grid
 - Design considerations
 - services and solutions provided by DIRAC
- Status

The Fermi Large Area Telescope (short Fermi-LAT)

Fedfill

- Fermi Gamma-ray Space Telescope launched on June 11th,
 2008 at Cape Canaveral, FL
- 16 identical modules in a 4x4 array, consists of tracker (direction) & calorimeter (energy) → pair-conversion telescope
- 18 tracker planes (TKR) 8.6 radiation lengths CsI(TS) (CAL)
- Energy Range: 20 MeV 300 GeV
- Large effective area ~1m²
- All-Sky monitor ~3h for 2 orbits, FoV ~2.4 sr (@ 1 GeV)
- Good energy resolution (<15 % @ E>100 MeV)
- Gamma Ray Burst Monitor energy coverage
 8 keV to 40 MeV, serves as trigger for GRBs

LAT Computing Demands

- Time-critical setup (data is publicly released as soon as it is processed)
- Event reconstruction rate 4 Hz, downlink rate 500 Hz need 125 computing cpus, peak 800 cores per downlink
- complex generic graphs of processes to be processed
- Raw data (15 GB/ day) reconstructed equals some 750 GB (processing, database storage, ~200 MB delivered to public)
- Peak usage 45.000 jobs per day (job = stream in the Pipeline language, complete procedure of batch jobs and scriptlets)
- In addition use Pipeline for Monte Carlo and scientific analysis jobs (e.g. GRB blind search)
- Small in comparison to LHC, but big for space mission

Space Telescope

The Big Guy: L1 Processing

Very complex task that runs processing and monitoring without killing the resources: average throughput ~100 MB/s

The little Brother: Monte Carlo Simulations

- Use Geant4 simulation for Gammas & Backgrounds with varying complexity
- Simple task: runMonteCarlo → register data in Data Catalog
- Much less I/O critical but CPU intense, run most of MC at IN2P3 @ Lyon (Thanks again for many years of great collaboration!)
 - Usually a few peaks of increased cycle usage (new simulation releases)
 - IF running at SLAC compete with LAT team for resources

Previously at Lyon

Massive All Proton Background Monte Carlo Run

FIG. 5 (color online). Positron fraction measured by the Fermi LAT and by other experiments [7,14,16]. The Fermi statistical uncertainty is shown with error bars and the total (statistical plus systematic uncertainty) is shown as a shaded band.

- Above shows most extensive LAT Monte Carlo Simulation to date
 - Simulations running simultaneously at Lyon AND SLAC since December 25th 2010 (until Mid June 2011)
 - Close to a billion triggered events, ~2 TB of disk (simulations are small)
 - Full use of our resources at Lyon & SLAC
- Can't we delegate this to the GRID?
 - Simpler than L1 and perhaps easier to implement, frees resources at Lyon/SLAC

The new kid in town: Data Reprocessing

- Data released as soon as it reaches the ground, available to the whole world
- New improvements in detector understanding, calibrations need to be distributed as well \rightarrow need for reprocessing of data
- First reprocessing done at SLAC to include on-orbit experience of LAT
 - I/O intense operation that requires various inputs at SLAC, porting to other site complicated
 - − ~1.5 million total batch jobs
 - Elapsed time: 112 days of active running (on SLAC farm)
 - CPU time (dole-class machine): 175 CPU years
- Would be good to port this to Lyon (work in progress)
 - Maybe on Grid... but lots of question marks

Folder /Data/Flight/Reprocess/P202

Edit description

Name	Туре	Files	Events	Size	Created (UTC)	Links
ELECTRONFT1	Group	20229	0	8.5 GB	02-Mar-2012 00:06:07	Files
FT1	Group	20229	189,323,074	17.8 GB	02-Mar-2012 00:06:06	Files
LS1	Group	20229	1,325,204,821	215.3 GB	02-Mar-2012 00:06:08	Files
ELECTRONMERIT	Group	22065	98,783,773	223.2 GB	25-Jan-2012 00:53:32	Files
EXTENDEDFT1	Group	20229	6,291,424,926	574.7 GB	02-Mar-2012 00:06:09	Files
EXTENDEDLS1	Group	20229	6,291,424,926	1,020.1 GB	02-Mar-2012 00:06:09	Files
GCR	Group	22065	48,094,684,158	1.0 TB	25-Jan-2012 00:53:31	Files
FILTEREDMERIT	Group	22065	6,882,654,108	5.8 TB	25-Jan-2012 00:53:29	Files
MERIT	Group	22065	48,094,684,158	38.5 TB	25-Jan-2012 00:53:30	Files
CAL	Group	22065	48,094,684,158	140.1 TB	25-Jan-2012 00:53:31	Files
RECON	Group	22065	48,094,684,158	642.5 TB	25-Jan-2012 00:53:33	Files

The Fermi-LAT Dataprocessing Pipeline

- Can manage arbitrarily complex tasks (type of data) and streams (actual computing instances, batch runs)
- Broker for all centralized data handling:
 - Manages requests and delegates to worker pool
 - Tightly coupled to LAT Data Catalog (plugin)
 - Interfaces with on-site batch solutions (and hopefully soon the Grid)
- Interface to batch farms done through JobControlService (daemon)
 - Supported batch types to date: BQS, LSF, SGE, Condor, PBS
 - Each daemon implements job submission, status tracking and deletion of jobs (streams)
 - Batch node workers send mails to central Pipeline Server to report their status
- Both Web & Command Line Interfaces to interact with Pipeline Server

Pipeline and Data Catalog Implementation

Pipeline Web Interface - Task Summary

Pipeline Web Interface Task details

A word on Pipeline States

- Pipeline does not resolve detailed batch states, only:
 - Waiting (not yet submitted to batch)
 - Ready (submitted to batch)
 - Queued (*that* is waiting on batch)
 - Submitted (just after being queued)
 - Running (on the batch)
 - Success (email sent successfully)
 - Failed (email sent, but contains failure)
 - Terminated (email delivery failed or Job Control Exception)
 - Canceled/ Skipped (Job Control Exception/ Warning)
- Any Interface implements "status" query, need to query Queued/Running
- No need for DIRACs extended Job Statuses, but could still be useful

ou to query

Match to batch-status

Pipeline Development

- Core Development
 - Tony Johnson
 - Dan Flath (now LCLS)
 - Brian Van Klaveren
- Job Control Service(s)
 - Claudia Lavalley (now CTA)
 - Stephan Zimmer

- Not exclusively for Fermi-LAT anymore:
 - SRS pipeline used by EXO/LSST/CTA/CDMS

The VO glast.org

VO manager: Michael Kuss, Francesco Longo

software manager: Johan Bregeon, Michael Kuss, Francesco Longo

VOMS server: voms2.cnaf.infn.it, voms-02.pd.infn.it (replica)

WMS: wms-multi.cnaf.infn.it (6 server load-shared at CNAF, Catania, and Ferrara),

prod-wms-01.pd.infn.it (backup)

Site	Place	CPU	Reserved	disk / TB	Fermi SW installed
INFN-PISA	INFN Pisa	3238	87	2	у
TRIESTE	INFN Trieste	2243	150	1.5	у
INFN-T1	CNAF/Bologna	8482	175	60	У
GRIF	LAL/POL Paris	3204	(200)		У
MSFG-OPEN	Montpellier	200	(<=100)	//	У
PERUGIA	INFN Perugia	166	2 + 24(*2)		у
INFN-NAPOLI-PAMELA	INFN Napoli	184	?		у
SNS-PISA	SNS Pisa	632	(30)	a-r	n, down till July
OBSPM	Paris Meudon	112	?	a	n, configuration issue
INFN-BARI	INFN Bari	3617	75		n
ROMA2	INFN ROMA2	?	?	00	n, decommissioned?
INFN-CNAF	CNAF/Bologna	8	?		n
CNR-ILC-Pisa	CNR Pisa	4	?		n

400 reserved, 1000 possible

Status: 04/2012

Bringing the Pipeline to the Grid ... should be easy?

Grid Issues:

- plethora of different Grid middleware (want to be as general as possible), existing glast.org
 VO uses gLite, could imagine use of OSG/SweGrid cycles
- Inherent Grid deficiencies
- Pipeline Design Issues:
 - Pipeline was not developed with Grid in mind!
 - Workers use emails to tell server about status of job
 - Batch jobs usually submitted under one generic login (glastpro, glastmc, etc.)
 - A stream in the pipeline may contain several batch instances (different batch job IDs)
 - All Data stored at SLACs xrootd (need to get data from workers to SLAC)
 - Making xrootd available to outside is difficult (have custom set of bbcp to handle firewalls)
 - Instead, use "split-layout" to re-use setup at SLAC/Lyon to perform pull request
- LAT enters extended mission time:
 - Number of developers dwindle, manpower greatly reduced

DIRAC as Grid Interface

- Actually misnomer, should be interface to DIRAC server @ Lyon
 - Renew certificates through pilot factory mechanism
 - Re-direct emails from batch workers via DIRAC notification scheme to DIRAC server and broadcast to SLAC
 - Store data on GRID SE and pull from SLAC
 - Store logfiles on DIRAC SE at Lyon (dCache) and allow web access to those

Goodies:

- DIRAC extended status: can be used to more effectively monitor jobs (and debug them)
- DIRAC shadow copies allow automatic data replication
- Can extend VO resources to OSG/SweGrid sites (almost) for free
- Focus on bringing MC to the Grid for now, more complex tasks later... (if needed)

DIRAC Pipeline Integration

Low Level Implementation I – and status

- Any Job Control Service implements interface: submit, status, delete
- dirac-submit (in progress):
 - Needs to report job-ID and registers job in DIRAC
 - Tunable parameters: cputime, environment
- dirac-status (done!):
 - 2 functions: tell reaper whether a job is alive and give (more detailed) information to user
 - Avoid excessive calls, so report all running jobs at once (and cache, unaware of all IDs)
 - Core information: submission details, resource usage

pace l'elesci

- dirac-delete (done!):
 - Enables deletion of a job, require input job-ID

Summary & Conclusions

- Fermi-LAT uses processing pipeline to handle all collaboration wide efforts:
 - L1 processing, reprocessing & MC-tasks
 - Tight integration of the pipeline system with the Data Catalog
- Pipeline connects to batch systems through dedicated Job Control Services that implement interface to:
 - Submit, status, delete
- Data needs to be stored on central xrootd @ SLAC
- Submissions done through generic user id glast, glastmc or glastpro
- Use DIRAC to simplify Grid access to existing VO resources:
 - DIRAC notification layer to communicate between batch nodes & DIRAC server (relay to Pipeline server)
 - DIRAC pilot factory for proxy renewal
 - DIRAC SE @ Lyon to store (small) Log files (and access via web-server)
 - Shadow replications on Grid SEs
 - Split-layout to pull data from Grid SE and transfer to xrootd @ SLAC
- Once done, extend resources to OSG/SweGrid?

Backup

Space Lelescope

Utilization

Pipeline Technologies

Thanks to DIRAC folks here: dirac-status

dirac-status using the DIRAC API

Low Level Implementation II – 3 possibilities

- Java JobControlService calls python module that implements DIRAC API and handles submission
 - What are the inputs for this "pipeline-dirac-submit"? How are LFNs handled?
- JobControlService builds JDL (bindings for java?)
 - DIRAC.Interfaces.API.Job implements _toXML, can we also use xml import?
 - Is there an xml schema file (xsd) that we could use to build our xml outside of DIRAC?
- Use Jython to expose relevant parts of API to Job Control Service
 - Could be added to contributed code to the DIRAC community
 - Most difficult for me since I don't know Java well enough...

Space Telescope