ILCDIRAC context DIRAC usage Performance Interface developments Conclusion

ILCDIRAC

A grid solution for the LC community

Stéphane Poss et al.
CERN

October 31, 2012

ILCDIRAC context DIRAC usage Performance Interface developments Conclusion

ILCDIRAC context

DIRAC usage

Performance

Interface developments

Conclusion

2/14

ILCDIRAC context

ILC VO

The ILC VO is dedicated to the study of future Linear Colliders:

ILC and CLIC, specifically the study of the detectors concepts: ILD
and SID

Members of the VO: DESY (DE), KEK (JP), CERN (CH), SLAC
(USA), PNNL (USA), LAPP (FR), VINCA (R.S.), etc.

14

ILCDIRAC context

ILCDIRAC motivations and context

e Need for distributed analysis framework for mass production
of MC data

e CLIC CDR had to be written
e Now SID DBD is being written

o Use existing solutions: DIRAC was thought to answer the
needs

e Needed framework for supporting the ILC VO applications:
generation, simulation and reconstruction for both detector
concepts

e File catalog: metadata and replica information.

ILCDIRAC was born

DIRAC usage

Usage

ILCDIRAC uses most services:

Not

Framework
Accounting
Workload management

Req uest management

Data management: File catalog, stager, storage element, etc.

Transformation system: production job management

using Resource Status System yet!

5/14

ILCDIRAC context DIRAC usage

Performance

Interface developments

Performance achieved in 2 years

Cumulative Jobs by Site
99 Weeks from Week 47 of 2010 to Week 42 of 2012

Provll | M201 - Octa0ll jnaoi2 Awaol2 hizoi2 a2l
Max: 613, Win: 005, Average: 3 65, Current 613

Sicemz:

Ran more than 6 million jobs in
~ 50 sites

Transfered data by Protocol
99 Weeks from Week 47 of 2010 to Week 42 of 2012

o

FRZOTL | A0l W20l 0G0l hn20l2 Apr20z 20z Oct202
Max. 732, i 151, Averoge: 256, Current. 732
B Replcationeger 501 B Stager s mg 00

Transfered more than 730 TB
between sites

6 million LFNs in the File Catalog and associated meta data.

6/14

Conclusion

Interface developments

Interface developments

Start of ILCDIRAC:

Interface inspired from LHCbJob interface

Applications are handled in one python module declaring one
class

No relations between them: all applications redefine
everything

Using output of one application as input to another was
cumbersome.

Most of all: maintenance and additions very time consuming

After 1.5 years, we needed a new interface system!

14

Interface developments

Redesigning the job interface

Motivation: separate the job definition from the application
definition, add flexibility, ease maintenance
e What is an application?
e Convert something into something else, or produce something
out of nothing
e Has a name, and certainly a version
e Needs instructions on what to do (parameters, or set of
parameters)
e Produces log files
e Can produce something that could be used by another
application in the same job

e What kind of jobs:

e User jobs: all inputs can be different for every job

e Production jobs: all jobs share the same properties, but the
input changes, preferably automatically (Transformation
system)

14

Interface developments

Application handling

Motivation: Provide a general framework for handling any
application, using the Workflow functionality of DIRAC

‘Appication. Application

—repr_(sel)
setName(self, name)
setVersion(self, version)
setSteeringFile(self, steeringfile)
selLogFile(self, logfile)
setNBEVts(sef, nbevts)
setNumberGfEvents(sef, nbevts)
setEnergy(self, energy)
setOutputFile(sel, ofile, path=None)
setOutputSE(sell, s¢)
setlnputFile(self, inputfile)
setForgetAboutinput(self)
gstinputFromApp(self, application)
setDebug(sel, debug=Trug)
listAttributes(sel

ool

—init_(self, paramdlict=None)
setScript(self, script)
setMacrofself, macro)
setArguments(sefl, args)

51 R

This example: how ROOT is handled

14

ILCDIRAC conte

DIRAC usage Performance

Job types

DIRAC Interfaces. API. Job.Job|

xecutable, " TogFile=")
setName(sslf, jobName)
setParametriclnputSandbox(self, files)
setParametriclnputDatalsell, Iins)
selGenericParametriclnput(self, inputlst)
setinputDataPalicy(self, policy, dataSeheduling=True)
setOutputDatafself, fins, outputSE=None, outputPath
setPlatform(self, backend)

setSystemConfig(sef, config)

selCPUTime(sell, timelnSecs)

setDestination(self, destination)
setDestinationCE(seHi, ceName)
setBannedSites(sefl, sites)

execute(sell)

Job

" init__(sel, script=None)
setlnputDatatself, lins)

setinputSandbox(sef, fles)

setQuputDatafsef, lins, OutputSE=[], OutputPat
setOutput Sandbox(self, files)
setignoreApplicationErors(self)
dontPromptMe(sel)

submit(sel, cirac=Nons, mode="wms)
checkparams(sel, dirac=None)

append(sell, application)

[usertob.Userdob | [ProdustionJobproductiondob |

Interface developments

[DBDGeneration DEDGeneration | [S1DProcketionJob SIDProcctiondob

Conclusion

10/14

Interface developments
Job types

User jobs (UserJob):
e All jobs can have different set of inputs/parameters
e Jobs are directly submitted to Workload Management System
e Goes through the Dirac API

Production jobs (ProductionJob):

o All jobs share the same parameters, only the input is different
e No local input sandbox allowed, only LFNs!

e Workflow is submitted to the Transformation System which
creates the jobs on request, setting the right input (if any)

e Cannot go through Dirac API, but easy to create a UserJob
out of it

Application definition does NOT depend on the job type.

11/14

Interface developments

Example of a UserJob

#import statements not added
ga = GenericApplication ()

ga.setScript (" myscript.py”)
ga.setArguments(”"some_args”)

root = RootScript({”"Script”:" /path/to/script.exe”,
" Arguments” :"1,2,3"})
root.getlnputFromApp(ga)

d DiraclLC ()

j = UserJob ()

res =j.append(ga)

if not res['OK']:
print res|[' Message']
exit (1)

res =j.append(root)

if not res['OK']:
print res[’'Message']
exit (1)

print j.submit(d)

Check
http://lcd-data.web.cern.ch/lcd-data/doc/ilcdiracdoc/
for APl documentation. 12/14

http://lcd-data.web.cern.ch/lcd-data/doc/ilcdiracdoc/

ILCDIRAC context DIRAC usage Performance Interface developments Conclusion

Advantages

e Adding an application is independent of the job: inherit from
the Application class and add whatever parameter you need,
also need to create the workflow module (I provide a base
module class)

e Adding a certain job type with different handling of (for
example) the output is easier: inherit from the Job class and
implement one method. UserJob and ProductionJob are
already suitable for most applications

e Maintenance is easier
Code elements are available for anyone willing to try it. Some bits

in the DIRAC Dirac.py and Job.py class would need changes to
simplify the code.

13 /14

Conclusion

Conclusion

e Very successful usage of DIRAC
e Very successful collaboration with DIRAC developers

Redesign of the ILCDIRAC job interface in a model that can be
used by others: code elements are available, should be imported in
DIRAC for optimal usage.

My contract ends at the end of this year: André Sailer and
Christian Grefe will take over

14 /14

	ILCDIRAC context
	DIRAC usage
	Performance
	Interface developments
	Conclusion

