
ILCDIRAC context DIRAC usage Performance Interface developments Conclusion

ILCDIRAC
A grid solution for the LC community

Stéphane Poss et al.

CERN

October 31, 2012

1 / 14

ILCDIRAC context DIRAC usage Performance Interface developments Conclusion

ILCDIRAC context

DIRAC usage

Performance

Interface developments

Conclusion

2 / 14

ILCDIRAC context DIRAC usage Performance Interface developments Conclusion

ILC VO

The ILC VO is dedicated to the study of future Linear Colliders:
ILC and CLIC, specifically the study of the detectors concepts: ILD
and SID

Members of the VO: DESY (DE), KEK (JP), CERN (CH), SLAC
(USA), PNNL (USA), LAPP (FR), VINCA (R.S.), etc.

3 / 14

ILCDIRAC context DIRAC usage Performance Interface developments Conclusion

ILCDIRAC motivations and context

• Need for distributed analysis framework for mass production
of MC data

• CLIC CDR had to be written
• Now SID DBD is being written

• Use existing solutions: DIRAC was thought to answer the
needs

• Needed framework for supporting the ILC VO applications:
generation, simulation and reconstruction for both detector
concepts

• File catalog: metadata and replica information.

ILCDIRAC was born

4 / 14

ILCDIRAC context DIRAC usage Performance Interface developments Conclusion

Usage

ILCDIRAC uses most services:

• Framework

• Accounting

• Workload management

• Request management

• Data management: File catalog, stager, storage element, etc.

• Transformation system: production job management

Not using Resource Status System yet!

5 / 14

ILCDIRAC context DIRAC usage Performance Interface developments Conclusion

Performance achieved in 2 years

Ran more than 6 million jobs in
≈ 50 sites

Transfered more than 730 TB
between sites

6 million LFNs in the File Catalog and associated meta data.

6 / 14

ILCDIRAC context DIRAC usage Performance Interface developments Conclusion

Interface developments

Start of ILCDIRAC:

• Interface inspired from LHCbJob interface

• Applications are handled in one python module declaring one
class

• No relations between them: all applications redefine
everything

• Using output of one application as input to another was
cumbersome.

• Most of all: maintenance and additions very time consuming

After 1.5 years, we needed a new interface system!

7 / 14

ILCDIRAC context DIRAC usage Performance Interface developments Conclusion

Redesigning the job interface

Motivation: separate the job definition from the application
definition, add flexibility, ease maintenance

• What is an application?
• Convert something into something else, or produce something

out of nothing
• Has a name, and certainly a version
• Needs instructions on what to do (parameters, or set of

parameters)
• Produces log files
• Can produce something that could be used by another

application in the same job

• What kind of jobs:
• User jobs: all inputs can be different for every job
• Production jobs: all jobs share the same properties, but the

input changes, preferably automatically (Transformation
system)

8 / 14

ILCDIRAC context DIRAC usage Performance Interface developments Conclusion

Application handling

Motivation: Provide a general framework for handling any
application, using the Workflow functionality of DIRAC

This example: how ROOT is handled

9 / 14

ILCDIRAC context DIRAC usage Performance Interface developments Conclusion

Job types

10 / 14

ILCDIRAC context DIRAC usage Performance Interface developments Conclusion

Job types

User jobs (UserJob):

• All jobs can have different set of inputs/parameters

• Jobs are directly submitted to Workload Management System

• Goes through the Dirac API

Production jobs (ProductionJob):

• All jobs share the same parameters, only the input is different
• No local input sandbox allowed, only LFNs!

• Workflow is submitted to the Transformation System which
creates the jobs on request, setting the right input (if any)

• Cannot go through Dirac API, but easy to create a UserJob
out of it

Application definition does NOT depend on the job type.

11 / 14

ILCDIRAC context DIRAC usage Performance Interface developments Conclusion

Example of a UserJob
#impor t s t a t emen t s not added
ga = Gen e r i cA p p l i c a t i o n ()
ga . s e t S c r i p t (” my s c r i p t . py”)
ga . setArguments (”some a rg s ”)

r oo t = Roo tSc r i p t ({ ” S c r i p t ” : ”/ path / to / s c r i p t . exe ” ,
”Arguments ” : ” 1 ,2 ,3 ” })

r oo t . getInputFromApp (ga)

d = Di rac ILC ()
j = UserJob ()
r e s =j . append (ga)
i f not r e s [’OK ’] :

p r i n t r e s [’ Message ’]
e x i t (1)

r e s =j . append (r oo t)
i f not r e s [’OK ’] :

p r i n t r e s [’ Message ’]
e x i t (1)

p r i n t j . submit (d)

Check
http://lcd-data.web.cern.ch/lcd-data/doc/ilcdiracdoc/

for API documentation. 12 / 14

http://lcd-data.web.cern.ch/lcd-data/doc/ilcdiracdoc/

ILCDIRAC context DIRAC usage Performance Interface developments Conclusion

Advantages

• Adding an application is independent of the job: inherit from
the Application class and add whatever parameter you need,
also need to create the workflow module (I provide a base
module class)

• Adding a certain job type with different handling of (for
example) the output is easier: inherit from the Job class and
implement one method. UserJob and ProductionJob are
already suitable for most applications

• Maintenance is easier

Code elements are available for anyone willing to try it. Some bits
in the DIRAC Dirac.py and Job.py class would need changes to
simplify the code.

13 / 14

ILCDIRAC context DIRAC usage Performance Interface developments Conclusion

Conclusion

• Very successful usage of DIRAC

• Very successful collaboration with DIRAC developers

Redesign of the ILCDIRAC job interface in a model that can be
used by others: code elements are available, should be imported in
DIRAC for optimal usage.

My contract ends at the end of this year: André Sailer and
Christian Grefe will take over

14 / 14

	ILCDIRAC context
	DIRAC usage
	Performance
	Interface developments
	Conclusion

