DIRAC File Catalog

A.Tsaregorodtsev, CPPM, Marseille

File Catalog

- The DIRAC project has as a goal to provide a full middleware stack to build distributed computing systems
 - With the possibility to easily integrate third party services
- File Catalog is a mandatory part of any distributed Data Management system
- The grid de facto standard LFC catalog has certain limitations in functionality and performance
- Rich experience acquired with the LHCb Data Management system
- The DIRAC File Catalog subproject was launched 3 years ago

DIRAC native service

- DFC is fully built in the DISET framework
- Part of the DIRAC set of services
 - Coupled to Configuration and Monitoring services
 - MySQL backend
- Accessible with a standardized FileCatalog client
- Client tools
 - command line
 - ▶ CLI
 - Python API

Replica Catalog

- Standard Replica Catalog functionality
 - Optimized for bulk queries
- On the fly PFN construction
 - Small database footprint
 - Pattern used in LHCb

- Ancestor-descendent relations
 - Basic provenance information
 - Possibility to select ancestors in a given generations

Storage Usage

- Efficient Storage Usage reports
- Using no special prefilled tables
 - Exact snapshot of the current DFC status
 - No overhead when adding new files and replicas
 - Slow
 - In the case of LHCb (~8M files, ~12M replicas, 1.5M directories)
 - Up to 20 secs for "heavy" users
 - Up to 2 mins for the overall report
- Using special prefilled tables
 - Updated at each new file or replica insertion
 - More efficient with bulk insertion
 - Instant reports for any directory
 - Possibility of instant "du" command

Storage Usage

```
C:/> size -l /lhcb/user/a/atsareg/l
directory: /lhcb/user/a/atsareg/l
Logical Size: 134,756,846 Files: 498 Directories: 500
    StorageElement
                    Size
                                 Replicas
                    20,254,050
   IN2P3-USER
                                 75
  2 CNAF-USER
                  18,363,672
                                 68
                   16,473,294
                                 61
  3 RAL-USER
  4 CERN-USER
                   19,443,888
                                 72
                   21,064,212
                                 78
  5 GRIDKA-USER
                   20,254,050
                                 75
  6 SARA-USER
  7 PIC-USER
                    18,903,780
                                 70
    Total
                    134,756,946 499
Query time 0.98 sec
```

Report of storage usage for any directory

- Whole community data
- Per user data
- "Logical" storage
 - ▶ LFNs, sum of the LFN sizes
- "Physical" storage
 - Physical replicas, total volume per Storage Element

Data Management components

- For DIRAC users the use of any Storage Element or File Catalog is transparent
 - Community choice which components to use
 - Several File Catalogs can be used in parallel
 - Complementary functionality
 - Redundancy

- Users see depending on the DIRAC Configuration
 - Logical Storage Elements
 - e.g. DIRAC-USER, M3PEC-disk
 - Logical File Catalog

Combined use with LFC

- Using LFC and DFC in parallel is perfectly possible
 - Provided the use of the DIRAC file naming conventions
- If the LFC part is not following the DIRAC file naming conventions
 - The whole PFN for replicas must be registered
 - Reducing the DFC efficiency
- Several communities are willing to evaluate the DFC usage as a possible LFC replacement
 - ▶ Biomed, Auger, ...
 - Unclear LFC prospects due to the end of the EMI project

Combined use with LFC

The LHCb case

- LFC is the main replica catalog
 - Central instance at CERN
- DFC is alternative write-only catalog
 - Kept in sync with LFC via a common FileCatalog client
 - Synchronization ensured by the failover mechanism
 - Can replace the actual heavy StorageUsage service
- Deployment plan
 - Installing an empty DFC service
 - Starting to put new data in both catalogs
 - Ignoring errors due to orphan replicas
 - Copying the existing LFC data to DFC in parallel

File Catalog Metadata

- Similar functionality with the AMGA metadata service
 - But coupled with the replica catalog to boost efficiency
- Metadata can be associated with each directory as key:value pairs to describe its contents
 - Int, Float, String, DateTime value types
- Some metadata variables can be declared indices
 - Those can be used for data selections
- Subdirectories are inheriting the metadata of their parents
- Data selection with metadata queries. Example:
 - find . Meta1=Value1 Meta2>3 Meta2<5 Meta3=2,3,4</pre>
- File metadata can also be defined

DFC Metadata

Web Portal interface

- Data search by metadata
- Basic information about data
- Data downloads
- More functionality to come

Metadata development

- The currently available DirectoryMetadata module
 - Subdirectory inherits the parent metadata
 - Subdirectory can not override parent metadata values
 - Simple to implement, allows for dynamic metadata optimization
 - Allow for a simple and intuitive GUI interface.
 - Limiting in the description of real life cases
- The new DirectoryTagMetadata module is in the works
 - Inspired by the CTA case
 - Subdirectories can provide additional values to the parents
 - Allow for data tags metadata with multiple values
 - The work is in progress
- Different modules can be chosen by configuration parameters of the given DFC service

DIRAC File Catalog evaluation

- ILC/CLIC Collaboration experience
 - ∼1M files
 - Intensive use of metadata, provenance data

File search by metadata

- BES Collaboration made a thorough comparison of DFC vs AMGA
- Similar performance
- More suitable functionality

Good example of cooperation

- The DFC development is a good example of cooperation of developers and users
 - ▶ ILC/CLIC, BES, CTA
 - Many bug reports and fixes
 - Many optimization suggestions
 - Comparison with LFC inspired many optimization ideas

BES

- Comparison/competition with AMGA inspired many optimization ideas, still more to come
- Many improvements in the catalog console interface
 - Command and data automatic completion

► CTA

- Many fruitful discussions on the nature of the metadata and the best way to express it in the DFC service
- More flexible metadata schema to suit the CTA needs is in the works

Further plans

- Metadata optimization
 - Metatags
 - Metaqueries
 - Query efficiency optimization
- Better Directory and File Metadata integration
 - Transparent to the user
 - Dynamically reorganized to increase efficiency
- Tighter coupling with the Transformation System
 - Possibility to register data driven operations
 - Possible now with the Transformation DB as an independent catalog
 - Basis for the Replication Service
 - Similar to the Globus Online or iRods services

Conclusions

- DFC is a service combining both Replica and Metadata Catalog functionality
- It is created based on a rich experience with the LFC and Bookkeeping service in the LHCb experiement
- It is becoming a mature service used in several projects with performance and functionality equivalent to LFC and AMGA
- More developments in managing Metadata are on the way