
Resources in 
DIRAC

Federico Stagni (on behalf of 
Mario Ubeda)



Overview

 What's this

 /Resources RFC

 New RSS
 Ontology and code

 ToDo



What's this

DIRAC.ResourceStatusSystem

 For storing resource status in DIRAC
 status information

 An advanced monitoring tool
 Aggregating dispersed information

 An “autonomic computing” tool
 The core is a generic policy system

 Used for monitoring and management

 Auto ban/un-ban, triggering tests, etc..



Before the code

RFC (click!)
 Defines how the /Resources section of CS 

should be → not an /Operations section!
 Result of VERY long discussions

 Completed ~6 months ago
 Not in production yet

Code had to be written (done, not 
integrated yet)

https://github.com/DIRACGrid/DIRAC/wiki/RFC-#5:-Resources-CS-section-structure


Before the code /2

 Key concepts:
 Community (VO)

 Site (access point → locality!)

 Domain (WLCG, Gisela, EGI...)

 Resource Type (Computing, Storage, Catalog, 
FileTransfer, Database, CommunityManagement)

/Resources/Sites/[Site Name]/[Resource Type]/
[Name Of Service]/[Type Of Access Point]/[Name 
Of Access Point]

/Resources/Domains/[Domain Name]



In the RSS

RFC → RSS (click!)

The CS structure is mapped in a 3 level 
hierarchy, each entry with a status:

 → Sites 

 → Resources

 → Nodes

https://github.com/ubeda/DIRAC/wiki/RFC-5-Extension---RSS-DB


RSS for status information
 DB:
 ResourceStatusDB: tables for: Status, Log, History

 Status: 3 families of identical tables: Site, Resource, Node

 Log: mostly for debugging purposes

 History: keeps historical changes of status

 Service
 ResourceStatusHandler (expose ResourceStatusDB)

 Client
 ResourceStatusClient: for interacting with the ResourceStatusDB

 ResourceStatus: object that keeps the connectivity with the 
DB/Service – refreshing DictCache of Storage Element status

 Web (in dev within LHCbWebDIRAC)
 Status Summary page (all “resources” combined)



RSS for advanced monitoring
 DB:
 ResourceManagementDB

 Service
 ResourceManagementHandler (mostly exposes the cached monitoring information)

 Agents:
 CacheFeederAgent

 Populates a cache of (useful, configurable, VO-specific) monitoring information
 e.g.: downtimes, failure rates, external monitoring results …

 Use “commands”

 Commands (implementation of the Command pattern) → not yet clients!
 Downtimes, accounting, jobs, transfers, space token occupancy... 

 Web (in dev within LHCbWebDIRAC):
 Detailed information for each of the Sites (book-markable pages)

 Downtimes overview



RSS for autonomic management

 A policy system runs the 
policies: Policy 
Enforcement/Decision/Informatio
n Points

 A policy is an implementation of 
a logic rule

 A policy uses an (aggregated) 
monitoring information to asses 
the status of a resource (state 
machine implemented!)



RSS for autonomic management /2

 Agents
 ElementInspectorAgent

 TokenAgent

 And you need the policies:
 Most of them will be VO-dependent

 Configurable via CS



Policy System



Complete ontology



Nice but...

 This is not integrated:
 https://github.com/DIRACGrid/DIRAC/pull/929

 DIRAC v6r6 or v6r7?

 Right now there is code running code with 
the old schema
 Mostly for testing

 Not really scalable

https://github.com/DIRACGrid/DIRAC/pull/929


ToDo

 Migration from old CS schema to new one
 CS helpers?



Questions



Further references

 http://cdsweb.cern.ch/record/1452204

 https://indico.cern.ch/contributionDisplay.py?
contribId=144&sessionId=8&confId=149557

http://cdsweb.cern.ch/record/1452204

	DIRAC presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

