
Resources in 
DIRAC

Federico Stagni (on behalf of 
Mario Ubeda)



Overview

 What's this

 /Resources RFC

 New RSS
 Ontology and code

 ToDo



What's this

DIRAC.ResourceStatusSystem

 For storing resource status in DIRAC
 status information

 An advanced monitoring tool
 Aggregating dispersed information

 An “autonomic computing” tool
 The core is a generic policy system

 Used for monitoring and management

 Auto ban/un-ban, triggering tests, etc..



Before the code

RFC (click!)
 Defines how the /Resources section of CS 

should be → not an /Operations section!
 Result of VERY long discussions

 Completed ~6 months ago
 Not in production yet

Code had to be written (done, not 
integrated yet)

https://github.com/DIRACGrid/DIRAC/wiki/RFC-#5:-Resources-CS-section-structure


Before the code /2

 Key concepts:
 Community (VO)

 Site (access point → locality!)

 Domain (WLCG, Gisela, EGI...)

 Resource Type (Computing, Storage, Catalog, 
FileTransfer, Database, CommunityManagement)

/Resources/Sites/[Site Name]/[Resource Type]/
[Name Of Service]/[Type Of Access Point]/[Name 
Of Access Point]

/Resources/Domains/[Domain Name]



In the RSS

RFC → RSS (click!)

The CS structure is mapped in a 3 level 
hierarchy, each entry with a status:

 → Sites 

 → Resources

 → Nodes

https://github.com/ubeda/DIRAC/wiki/RFC-5-Extension---RSS-DB


RSS for status information
 DB:
 ResourceStatusDB: tables for: Status, Log, History

 Status: 3 families of identical tables: Site, Resource, Node

 Log: mostly for debugging purposes

 History: keeps historical changes of status

 Service
 ResourceStatusHandler (expose ResourceStatusDB)

 Client
 ResourceStatusClient: for interacting with the ResourceStatusDB

 ResourceStatus: object that keeps the connectivity with the 
DB/Service – refreshing DictCache of Storage Element status

 Web (in dev within LHCbWebDIRAC)
 Status Summary page (all “resources” combined)



RSS for advanced monitoring
 DB:
 ResourceManagementDB

 Service
 ResourceManagementHandler (mostly exposes the cached monitoring information)

 Agents:
 CacheFeederAgent

 Populates a cache of (useful, configurable, VO-specific) monitoring information
 e.g.: downtimes, failure rates, external monitoring results …

 Use “commands”

 Commands (implementation of the Command pattern) → not yet clients!
 Downtimes, accounting, jobs, transfers, space token occupancy... 

 Web (in dev within LHCbWebDIRAC):
 Detailed information for each of the Sites (book-markable pages)

 Downtimes overview



RSS for autonomic management

 A policy system runs the 
policies: Policy 
Enforcement/Decision/Informatio
n Points

 A policy is an implementation of 
a logic rule

 A policy uses an (aggregated) 
monitoring information to asses 
the status of a resource (state 
machine implemented!)



RSS for autonomic management /2

 Agents
 ElementInspectorAgent

 TokenAgent

 And you need the policies:
 Most of them will be VO-dependent

 Configurable via CS



Policy System



Complete ontology



Nice but...

 This is not integrated:
 https://github.com/DIRACGrid/DIRAC/pull/929

 DIRAC v6r6 or v6r7?

 Right now there is code running code with 
the old schema
 Mostly for testing

 Not really scalable

https://github.com/DIRACGrid/DIRAC/pull/929


ToDo

 Migration from old CS schema to new one
 CS helpers?



Questions



Further references

 http://cdsweb.cern.ch/record/1452204

 https://indico.cern.ch/contributionDisplay.py?
contribId=144&sessionId=8&confId=149557

http://cdsweb.cern.ch/record/1452204

	DIRAC presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

