Experimental overview of current and future neutrino experiments D.Duchesneau LAPP, Annecy

- Introduction
- Neutrino mass and nature
- Oscillation physics: towards CP violation and Mass hierarchy
- Anomalies and sterile neutrino search
- Conclusions

The enigma of mas

LAPP, October 12th 2012

- \rightarrow v are massive => hints for physics beyond the standard model
- \rightarrow SM should be extended to reconcile with massive v and the Higgs

-Dirac v: minimal extension with Dirac mass term but RH v interacts with Higgs too weakly $(10^{12}$ times weaker than that of the top) to acquire mass

- Majorana v: Heavy RH neutrinos are created for a brief moment (See-Saw mechanism) from LH v interaction with Higgs ; no fundamental distinction between matter and anti-matter

Neutrino mixing status in 2012

Ref: G.L. Fogli et al. arXiv:1205.5254v3

mass

3

Some neutrino open fundamental questions and how to answer experimentally

- absolute mass scale?
- -> fundamental for cosmology and unification scheme of interactions time of flight: Supernova 1987A m< 20 eV end of electron beta spectrum : Tritium m< 2.5 eV Fluctuations of Cosmological Microwave Background: WMAP m<0.23 eV</p>
- are neutrinos their own antiparticle (Majorana neutrinos) or not (Dirac neutrinos) search for neutrinoless double beta decay (possible clue to absolute mass scale)
- relation between neutrino flavor eigenstates and mass eigenstates (mixing matrix) under investigation => key result has been obtained this year with θ_{13}
- Is there CP violation in the neutrino sector? (LEPTOGENESIS)
- Are there "sterile" neutrinos? Are there more than 3 mass eigenstates?

flavour oscillations

Use all possible neutrino sources: Sun, nuclear reactors, atmospheric showers, beam accelerators of various energies.....

Neutrino mass:

Cosmological limit: in the future with galaxy and CMB lensing (Planck, LSST), may improve by a factor 7 the current limit if theoretical predictions of the matter power spectrum are accurate to $\sim 1\%$.

Direct determination using β decay spectrum endpoint

 $m_{\beta}^2 = |U_{e1}|^2 m_1^2 + |U_{e2}|^2 m_2^2 + |U_{e3}|^2 m_3^2$

Previous results from Troitzk and Mainz experiments: $m_{ve} < 2 \text{ eV}$ C. Kraus et al., Eur. Phys. J. C40, 447 (2005) V. Aseev et al., PRD in press (2011)

Nature of the neutrino: Double beta decay experiments

If $0\nu\beta\beta$ decay is observed \Rightarrow neutrinos are Majorana particles and lepton number is violated

 $m_{\beta\beta} = |U_{e1}|^2 m_1 + |U_{e2}|^2 e^{i\alpha_2} m_2 + |U_{e3}|^2 e^{i\alpha_3} m_3$

Several observables: electron energy, angular distribution, excited states, daughter nucleus id. => Several experimental approaches $|m_{\beta\beta}| \leq 10^{-2} \text{ eV}$

Current limits are around 0.3 eV Normal Spectrum

7

Recent results with new generation $2\beta 0\nu$ experiment with Xenon

EXO-200 Best limit on 0vββ decay in Xenon Limit on $m_{\beta\beta} < 140-380$ meV

Two almost identical halves reading ionization and 178 nm scintillation,

Goal: 40 cnts/2y in $0\nu\beta\beta \pm 2\sigma$ ROI, 140 kg LXe

Double beta decay experiments

$$m_{\beta\beta} = \left| \sum_{i} U_{ei}^2 m_i \right| = \left| c_{13}^2 c_{12}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3} \right|$$

Next generation will use \geq 100 kg (started with Xe experiments)

Improvements of background needed

Next generation of $2\beta 0\nu$ experiments

SuperNEMO

Calorimeter Main walls

X-walls

A module

+

_希

Similar tracking approach as Nemo3

	Demonstrator module	20 Modules
Source : ⁸² Se	7 kg	100 kg
Drift chambers for tracking	2 000	40 000
Electron calorimeter	500	10 000
y veto (up and down)	100	2 000
$\Gamma_{1/2}$ sensitivity	6.6 10 ²⁴ y (No background)	1. 10 ²⁶ y
<m<sub>v> sensitivity</m<sub>	200 – 400 meV	40 – 100 meV

Goals of the next oscillation experiments: :

Go deeper in the understanding of the MNSP mixing matrix and mechanism :

> More precise measurements of θ_{23} and Δm_{23}^2

Mass hierarchy studies and the sign of Δm_{23}^2 (matter effect studies)

Study possible CP violation (δ) looking at ($P(\nu_{\alpha} \rightarrow \nu_{\beta}) - P(\overline{\nu_{\alpha}} \rightarrow \overline{\nu_{\beta}})$)

Lengthy experimental and theoretical program with several challenging steps

MNSP Matrix and 3 v oscillation

(MNSP: Maki-Nakagawa-Sakata-Pontecorvo) $V_{\alpha} = \sum_{j=1}^{\infty} U_{\alpha j} V_j$ **Formalism Mixing matrix**

 $U_{\alpha i}$ matrix element

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

Oscillation probability

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \sum_{ij} U_{\alpha j} U_{\beta j}^{*} U_{\alpha i}^{*} U_{\beta i} e^{-i\frac{\Delta m_{ij}^{2}L}{2E}} \approx \sin^{2} 2\theta_{ij} \sin^{2} \left(\frac{\Delta m_{ij}^{2}L}{4E}\right)$$

6 parameters to determine:

- 3 angles, 2 mass differences,
- 1 CP violation phase

Experimental evidence of v oscillation in disappearance mode

Experimental evidence of v oscillation in appearance mode OPERA in CNGS beam $v_{\mu} \rightarrow v_{\tau}$

A second τ event observed in 2012

3000

at reactors from the survival rate of v_e

 $\frac{2}{4E_{u}}\frac{\Delta m_{31}^{2}L}{4E_{u}}$

 $P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \theta_{13}$

Advantages:

- \bullet No dependence on δ
- Negligible matter effect
- Only sensitive to θ_{13}
- 3 reactor experiments;
 - Double Chooz (France)
 - Daya Bay (China)
 - Reno (Korea)

Near/Far ratio to cancel reactor and detector systematics Gd loaded liquid scintillators

Negligible term if L/E chosen near the atmospheric maximum and $\sin^2 2\theta_{13} > 10^{-3}$

Signature: Inverse β decay process.

 Δm_{21}

 $\cos^{2}\theta_{13}\sin^{2}2\theta_{12}$

Minakata and Nunokawa, hep-ph/0108085

Future Long Baseline Projects

New conventional v_{μ} beams to be considered, based on CNGS experience

2 main options

Short distance: 130km Memphys at Frejus SPL+beta beam CP and T violation

Long distance: 2300km Pyhasalmi

Fine grain detector e.g. 20kton fid. Larg + Magnetized detector Long distance allows rapid sensitivity to sign(△m²13)

1st step easier: SPS C2PY → consortium 1st priority Nextsteps: HP 50 GeV PSor neutrino factory

LAGUNA -LBNO New EU FP7 design study 2011-2014

Rich physics program

- v properties(oscillation, mass hierarchy leptonic CP violation: beams, v atm..)
- Study of astrophysical phenomena linked to v:

 \succ Gravitational star collapse (v from Supernovae)

Star formation at the beginning of the universe (SN v diffuse background)

Study of thermonuclear fusion process (solar v)

•Test of geophysical mode of the earth (Geo - ν , U, Th - ν) •Nucleon decay

Future Long Baseline Projects

CERN beam to Pyhäsalmi in Finland (2300 km)

high energy wide band beam (neutrinos >1 GeV) => 1st and 2^{nd} maxima

Future Long Baseline Projects in the World

US : LBNE

Liquid Argon TPC 25 kton at DUSEL (Homestake Mine) ~2400mwe Beam from Fermilab (0.7-2.5MW)

baseline=1300 km <E>~3 GeV

Recently "downscoped" by DOE

Japan : Hyper-K

Water Cherenkov 560 kton near Kamioka, 1750 mwe Beam from JPARC (1.66MW) baseline=,295 km <E>~0.8 GeV

Letter of Intent ArXiv 1109.3262

Anomalies in 3-v interpretation of global neutrino oscillation data

if new oscillation signal, requires $\Delta m^2 \sim O(1eV^2)$ and $\sin^2 2\theta > 10^{-3}$ \rightarrow very short baseline oscillation for reactor v, $L_{osc} \sim 2-10m$

Anomaly investigation and search for sterile neutrino

STEREO Experiment Concept: under study

Proposal under study Reactor experiment @ ILL (Grenoble, France) Compact reactor core (~ 40 cm)

Detector Liq. Scint. 1m x 1m x 2m 64 PMTs

Goal: focus on shape distorsion

Celand (joint study by saclay, RCNS Tohoku, ITEP, IPC) PRL 107, 201801, 2011

Celand Expected Signal (Oscillation)

Anomaly investigation and search for sterile neutrino

In addition to source and reactor experiments,

SBL beam projects exist. Ex: Icarus T600 at CERN (project submitted to SPSC)

26

Conclusions and perspectives:

➢ Neutrino physics is a very active field

Since 15 years several new results changed our view of the field and comforted us to revise our current knowledge within the Standard Model

> A lot of experimental and theoretical challenges are in front of us and worth to be pursued.

Neutrino Pole in ENIGMASS is a Collaboration: LAPP, LPSC, LSM, and LAPTh

The scientific program axes cover most of the present fundamental research on the neutrino physics

- > Mass hierarchy and CP violation
- Neutrino nature
- Sterile neutrinos
- Supernovae neutrinos

This program is in adequation with the national and international raodmaps. It will be performed using close infrastructures : CERN, LSM, ILL

Short term(2012 -2015): oscillation CNGS/OPERA

sterile neutrinos and anomalies (ILL reactor, SEDINE, STEREO)

Middle term (2012 – 2020) : Double beta decay (SuperNEMO)

Long Baseline studies (LSM is candidate for the site)

Long term (2020 and beyond): Long Baseline

Support from theoretical groups of LaPTh and LPSC

The End

Mass hierarchy:

Other investigation techniques:

Atmospheric neutrinos: looking at the effect of matter effect in the $\nu\mu$ rate

Mass hierarchy:

Daya Bay II

Long Baseline reactor with large detector

- 20-50 kton LS detector •
- 2-3 % energy resolution •
- Rich physics possibilities •
 - ⇒Mass hierarchy
 - ⇒Precision measurement of 4 mixing parameters
 - ⇒Supernovae neutrino
 - ⇔Geoneutrino
 - \Rightarrow Sterile neutrino
 - ⇒Atmospheric neutrinos
 - \Rightarrow Exotic searches

Accelerator: Nova, T2K

30

L/E (km/MeV)

What is the impact of the new oscillation results for the Design Studies:

30