Experiments on Gravitation

Loïc Rolland, Jean-Stéphane Ricol, Guillaume Pignol

 \rightarrow Virgo: the gravitational waves

- \rightarrow LSST: the deep optical sky in time domain
- \rightarrow Granit: the neutron fall

Gravitational waves (GW)

What is a gravitational wave ?

Effect is measurable on free masses

$\Delta L_x(t) \sim h(t) L_x$ h(t) : GW amplitude

Illustration of the variation of the metric with free masses located on a circle, for a GW with + polarization propagating along z

L. Rolland

Gravitational wave sources

Supernova

- star collapse
- expected rate: ~2/century in the Milky Way
- GW emitted during few milliseconds

L. Rolland

Neutron stars

- radius ~10 km
- rotation period: ~ 1 ms to 1 s
- Milky Way: 10⁹ expected (1000 known pulsars)
- periodic GW emitted continuously

Compact binary objects

- systems with two neutrons stars and/or black holes
- end of life: coalescence of the two objects (CBC)
- expected rates: 0.4 to 200/year in a radius of 200 Mpc
- GW received during few seconds

Interferometric GW detection

Nominal sensitivity curve of Advanced Virgo

GW in the range 10 Hz - 10 kHzAmplitudes $h \sim 10^{-23}$

Orders of magnitudes:

– variation of the Earth-Sun distance by an atom

- variation of a 3-km long arm by 1/1000 of a proton

Beam power measurement

Suspended mirror

(((O)))VIRGD

A world-wide network of interferometers

Evolution of ground-based GW detectors

Main Advanced Virgo goals

Participate to the **1**st detections of GW !

General Relativity studies Check the GW properties Study GR in strong fields

Understand the GW source astrophysics

Link the short gamma-ray bursts (GRBs) to compact binary coalescences ? Observe the formation of black holes during supernovae Get information on neutron star internal structure → study the sources within a (real-time) <u>multi-messenger framework</u>

Cosmology

Constrain the Hubble parameter with GRBs Search for the cosmic background of GW

((O))/VIRGD

AdV goals: multi-messenger astronomy

Increase the significance of the GW events
 Better understand the astrophysical events

L. Rolland

AdV goals: linking short GRBs and CONVIRGO compact binary object coalescences ?

External trigger: look for GW at the time and in the direction of GRBs

- → reduce background level
- → improve analysis sensitivity

D > 3.5 Mpc → this GRB was not in the Andromeda Galaxy !

B. Abbot et al, Astrophys.J.681 (2008) 1419

Expected rates for nominal Advanced LIGO-Virgo 2 neutron stars: $0.4 \rightarrow 400$ /year (up to ~200 Mpc) 2 black holes: $0.4 \rightarrow 1000$ /year (up to ~1 Gpc)

J. Abadie et al. Class. Quantum Grav. 27 (2010) 173001

Main LAPP activities in Advanced Virgo

Instrumentation

Sensing of the power of laser beams of the interferometer

(optical components and mounts, photodiodes, front-end electronics, vacuum tanks,

suspended benches, in-vacuum compatibility, ...)

General digital electronics and data acquisition system

(timing synchronization, ADC and DAC channels, cameras, online data collection/distribution, data visualization tools, ...)

Data analysis

Interferometer calibration and GW signal reconstruction

Searches of binary compact object

coalescences

Data quality

LIGO-Virgo online data analysis to provide alerts for other observatories

L. Rolland

LSST detector in brief

Large Synoptic Survey Telescope

Location: Northern Chile (Cerro Pachon) Optical telescope: 6 bands (ugrizy) in 320 nm to 1050 nm Large field of view: 3.5° Large collection area: 8.4 m

 \rightarrow detect faint objects up to magnitude 24 in 15 s

First light: 2020, for 10 years

The main "deep-wide-fast" survey

1 pair images of each sky field every 3 nights \rightarrow 1000 images of each sky field in 10 years

\rightarrow deep observation of the time domain optical sky !

Physics with LSST

Cosmology

Dark matter 3D mapping via strong gravitational lensing

Dark energy and accelerated expansion of the Universe with different independent observables: cosmic shear, BAO, supernovae, ...,

Transients

Supernovae, GRBs, AGNs, ..., new variable objects ? → multi-messenger/wavelength observations with AdVirgo, CTA,...

Solar System

Asteroids, comets, ...

Milky Way

L. Rolland

Main LPSC activities in LSST

Instrumentation

Development of a bench for the calibration of the camera

Conception and realization of the camera *filter loader*

Data analysis and simulation

Galaxy redshift estimation (photometric reconstruction from the six optical bands of the telescope) Study of the baryonic acoustic oscillations (BAO) (simulation and reconstruction of the cosmological parameters)

Phenomenology

Loop quantum gravity \rightarrow see next talk by Aurelien Barrau

L. Rolland

LSST: global view of the cosmological analysis

L. Rolland

Photometric reconstruction (photoz) in LSST

For LR>0.98, the *photoz* reconstruction is within LSST specifications Correlation with reconstruction using neural network can further reject 'catastrophic' galaxies

Further work: improve simulations, detailed study of the systematics, ...

L. Rolland

GRANIT

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dz^2} + mgz\psi = E\psi$$

GRAvitational Neutron Induced Transition

 \rightarrow measure, at the ILL reactor, the discrete energy levels of neutrons bouncing above a mirror

Probing Dark Energy models

(Chameleons) by searching for a new force close to the mirror. (see Aurelien Barrau talk)

L. Rolland

Conclusions

Advanced Virgo

Science data starting in 2015—2016 Going towards nominal sensitivity in few years \rightarrow 1st detections of gravitational waves !

Independent cosmological measurements Hubble parameter, dark matter, dark energy, Universe expansion...

Multi messenger astronomy GRBs, supernovae, pulsars, other transients...

LSST First light in 2020 \rightarrow Deep optical sky in the time domain

Granit

Construction is on-going \rightarrow neutron quantum states in gravity field

L. Rolland

Backup

Un résultat choisi : recherche d'étoiles

Emission d'ondes gravitationnelles par les étoiles à neutrons

→ non-sphéricité de l'étoile

Recherche sur 116 pulsars connus (d<~500 pc)</p>
> pas de détection d'OG → ellipticités des étoiles à neutrons < ~ 10⁻⁷

→ l'écart à la sphéricité des étoiles à neutrons (r~10 km) est inférieur à ~1 mm !

ApJ 713 (2010) 671-685

Pulsars du Crabe (~30 Hz) et de Vela (~12 Hz) ≻ralentissement de la période de rotation (obs. radio) → perte d'énergie ≻pas de détection d'OG

→ moins de 2% / 35% de cette énergie est émise sous forme d'OG

ApJ 683(2008) L45-L49 ApJ 737 (2011), 93 (16pp)

L. Rolland

Advanced Virgo: observing further !

→ Likely detections: beginning of the gravitational wave astrophysics in 2015 – 2020 !

See more about the technical challenges in Laurent Derôme talk

L. Rolland

AdV goals: linking short GRBs and *(O)* compact binary object coalescences ?

External trigger: look for GW at the time and in the direction of GRBs

- → reduce background level
- → improve analysis sensitivity

D > 3.5 Mpc \rightarrow this GRB was not in the Andromeda Galaxy !

B. Abbot et al, Astrophys.J.681 (2008) 1419

L. Rolland

Enigmass kick-off meeting, October 2012 - LAPP

GW searches around 22 short GRBs (2005-2007)

 \rightarrow 90% CL lower bound on GRB distances:

- neutron star-neutron star:
- neutron star-black hole:

Dmedian D ~ 6.7 Mpc

~ 3.3 Mpc

J. Abadie et al, Astrophys. Journal 715 (2010) 1453

Oscillations acoustique de baryons (BAO

Univers primordial non homogène, compétition entre la pression de radiation et les forces gravitationnelles : oscillation acoustique de baryons

- Echelle caractéristique dans la distribution des galaxies : étude de la fonction de corrélation entre 2 galaxies

- Ne dépend que de l'expansion de l'Univers

Performances attendues pour LSST Importance et complémentarité des différentes sondes (BAO, Sne, Weak Lensing, ...)

Excitation of resonant transitions

L. Rolland

Enigmass kick-off meeting, October 2012 - LAPP

y (mm) 40

30

20 10

0 0

23/17

45 50 x (mm)

5 10 15 20 25 30 35 40