E07-007 & E08-025 Overview

Carlos Muñoz Camacho

Institut de Physique Nucléaire, Orsay, IN2P3/CNRS

DVCS Collaboration Meeting November 12, 2012

Hall A DVCS program

 $\begin{array}{l} {\rm High} \ Q^2 \\ {\rm Perturbative} \ {\rm QCD} \end{array}$

Non-perturbatif GPDs

Limite de Bjorken :

$$\begin{array}{ccc} Q^2 = & -q^2 \to & \infty \\ & \nu & \to & \infty \end{array} \right\} \quad x_B = \frac{Q^2}{2M\nu} \text{ fixed}$$

Hall A DVCS program

High Q^2 Perturbative QCD

Non-perturbatif GPDs

Handbag diagram

PAC 39 Report, June 2012

"The new data will be of unprecedented statistical precision, but the statistics will go to waste if the data cannot be interpreted with commensurate accuracy. [One] example is the GPD program, where it is pointless to display new asymmetries before scaling has been established in a given channel"

Carlos Muñoz Camacho (IPNO)

E07-007/E08-025

Goal:

- Measure DVCS cross sections as a function of Q² and different beam energies, for both LH2 and LD2.
- \bullet Separation of DVCS^2 from interference BH-DVCS interference terms
- Rosenbluth separation of π^0 electroproduction cross section

- Same setup for both experiments
- Only target change from LH2 to LD2
- Data taken: Oct-Dec 2010

Motivation: results from E00-110

BH much smaller than total cross section ⇒ BH·DVCS interference alone cannot explain the difference

E07-007: Rosenbluth-like DVCS²– \mathcal{I} separation in Hall A

- Clean separation of BH-DVCS intereference term from pure DVCS²
- Scaling test on the real part of the DVCS amplitude
- Rosenbluth separation of σ_L/σ_T for $ep \to ep\pi^0$

DVCS detector package

- 208-channel PbF_2 electromagnetic calorimeter
- DVCS stand of top of BigBite stand (moving cart: 1.1 m → 5.5 m from target)
- CH shielding in front of calorimeter

DVCS electronics and DAQ

1 GHz sampling based on the Analog Ring Sampler (ARS)

Chip developed by $\mathsf{IRFU}/\mathsf{CEA}\text{-}\mathsf{Saclay}$

Calorimeter trigger:

• VALIDATES if 1 set of 2×2 blocks over threshold ($\sim 500 \text{ ns}$).

1	2	3	4	5	6	7	8	9	10	11
12	13	14	15	16	17	18	19	20	21	22
23	24	25	26	27	28	29	30	31	32	33
34	35	36	37	38	39	40	41	42	43	44
45	46	47	48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63	64	65	66
67	68	69	70	71	72	73	74	75	76	77
78	79	80	81	82	83	84	85	86	87	88
89	90	91	92	93	94	95	96	97	98	99
100	101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120	121
122	123	124	125	126	127	128	129	130	131	132

Front-end electronics by LPC/Clermont-Ferrand

• Each sample in 12-bit flash ADCs

More details: M. Magne's talk (electronics) and A. Camsonne (DAQ)

Experimental setup

DVCS setup in Hall A

Running conditions for E07-007 & E08-025

Data analysis

- Beam line
 - Polarimetry (Compton + Møller) data (FINISHED), E. Fuchey
 - Beam charge monitors (BCM) calibration (FINISHED), J. Roche
- HRS
 - Optics and mispointing checks (FINISHED), P. Bertin
 - Drift chambers time offsets (FINISHED), C. Muñoz
- Calorimeter
 - Elastic (energy) calibrations (FINISHED), A. Martí
 - Waveform analysis of PMT pulses (FINISHED), A. Martí
 - Time (calorimeter + HRS) corrections (FINISHED), M. Mazouz
 - Clustering and calibration optimizations (IN PROGRESS...)
- MC simulation, R. Paremuzyan, M. Defurne
 - GEANT4 written from scratch based on previous GEANT3 (FINISHED)
 - Validating results by comparing to old simulation (IN PROGRESS...)

HRS

HRS analysis

Frequent timing changes during the experiment

Careful checks and ajustments of VDC offsets necessary

- Survey of HRS pointing at one particular angle
- Multifoil target runs at every • kinematics

Carlos Muñoz Camacho (IPNO)

Coincidence time

0.67 ns coincidence time resolution

More details: M. Mazouz's talk

Elastic calibrations

$ep \to ep$

- p in L-HRS
- e in DVCS calorimeter

Date	E (GeV)	σ/E	$\sigma/\sqrt{E}~({ m GeV}^{1/2})$
Oct 26	3.2	3.1%	0.0555
Nov 17	3.2	3.1%	0.0555
Dec 14	3.9	2.8%	0.0553

- Absolute calibration points for each block
- \bullet Energy resolution and absolute calibration changes \Rightarrow Radiation damage

More details: A. Martí's talk

Radiation damage

Calibration coefficient changes between:

Nov 17 / Oct 26 (7% average gain loss)

- Radiation damage to PbF_2 blocks
- PMT gain changes

PMTs shipped to Clermont-Fd for testing in Feb 2012...

E07-007/E08-025 Calorimeter

PMT gain changes measured at LPC-Clermont

10V correspond $\sim 15\%$ gain change

Moderate gain variation of PMTs after two experiments

PMTs in good shape for 12 GeV

Carlos Muñoz Camacho (IPNO)

Simulation

Geant4 simulation package

- Full geometry implemented:
 - Target and scattering chamber
 - Calorimeter blocks with wrapping and PMT holders, shims, and surveyed positions
 - Calorimeter and beam pipe shielding
- Coupled to C++ DVCS event generator, including RC
- Using same C++ reconstruction software as DVCS data

More details: R. Paremuzyan

TODO

- Final checks on waveform analysis results
- Refine calibration between elastic calibrations (using $\pi^0 \to \gamma \gamma$)
- π^0 substraction (for DVCS)
- Cross-section extraction (as a function of Q^2):
 - DVCS L/T separation on proton
 - DVCS $\ensuremath{\mathsf{L}}/\ensuremath{\mathsf{T}}$ separation on neutron
 - $\pi^0 \ {\rm L/T}$ separation

Roughly 6-12 months of analysis left for preliminary results