Physics after the Higgs discovery

Abdelhak DJOUADI (LPT Paris-Sud/CERN)

Before the 4th of July

- The 4th of July and the day after...
- Measurement of the Higgs at the LHC

• Why the ILC?

IRFU Saclay, 04/09/2012

The day after the Higgs... – A. Djouadi – p.1/18

1. Before the 4th of July

To generate particle masses in an SU(2)×U(1) gauge invariant way: introduce a doublet of scalar fields $\Phi = \begin{pmatrix} \Phi^+ \\ \Phi^0 \end{pmatrix}$ with $\langle 0 | \Phi^0 | 0 \rangle \neq 0$

$$\begin{split} \mathcal{L}_{\mathbf{S}} = & \mathbf{D}_{\mu} \Phi^{\dagger} \mathbf{D}^{\mu} \Phi - \mu^{2} \Phi^{\dagger} \Phi - \lambda (\Phi^{\dagger} \Phi)^{2} \\ \mathbf{v} = & (-\mu^{2}/\lambda)^{1/2} = 246 \; \mathrm{GeV} \\ \Rightarrow & \text{three d.o.f. for } \mathbf{M}_{\mathbf{W}^{\pm}} \; \text{and } \mathbf{M}_{\mathbf{Z}} \\ & \text{For fermion masses, use } \underline{same} \; \Phi: \\ & \mathcal{L}_{Yuk} = & -\mathbf{f_{e}}(\mathbf{\bar{e}}, \mathbf{\bar{\nu}})_{\mathbf{L}} \Phi \mathbf{e_{R}} + \dots \end{split}$$

Residual dof corresponds to spin–0 H particle.

- \bullet The scalar Higgs boson: $J^{\mathbf{PC}}=0^{++}$ quantum numbers.
- Masses and self-couplings from $V: \dot{M}_{H}^{2} = 2\lambda v^{2}, g_{H^{3}} = 3 \frac{M_{H}^{2}}{v^{2}}, ...$
- Higgs couplings \propto particle masses: $g_{Hff} = \frac{m_f}{v}, g_{HVV} = 2 \frac{M_V^2}{v}$

The Higgs unitarizes the theory:

without Higgs: $|A_0(vv \rightarrow vv)| \propto E^2/v^2$ including H with couplings as predicted:

 $|A_0|\!\propto\!M_H^2/v^2\!\Rightarrow$ the theory is unitary but needs $M_H\!\lesssim\!700$ GeV...

Once M_H known, all properties of the Higgs are fixed (modulo QCD). IRFU Saclay, 04/09/2012 The day after the Higgs... – A. Djouadi – p.2/18

1. Before the 4th of July

A major problem in the SM: the hierarchy/naturalness problem Radiative corrections to M_{H}^2 in SM with a cut–off $\Lambda\!=\!M_{NP}\!\sim\!M_{Pl}$

 $\Delta M_{H}^{2} ~\equiv~ \cdots \overbrace{f}^{H} \cdots \overbrace{x}^{A^{2}} \approx (10^{18}~GeV)^{2}$

 $M_{\rm H}$ prefers to be close to the high scale than to the EWSB scale...

Three main avenues for solving the hierarchy problem:

Supersymmetry: a set of new/light SUSY particles cancel the divergence.

- MSSM \equiv two Higgs doublet model \Rightarrow 5 physical states $\mathbf{h}, \mathbf{H}, \mathbf{A}, \mathbf{H}^{\pm}$
- very predictive: only two free parameters at tree–level ($aneta, M_A$)
- upper bound on light Higgs $M_h\!\lesssim\!130~GeV$ and $M_{H,H^\pm}\!\approx\!M_A\!\lesssim\!TeV$

Extra dimensions: there is a cut–off at TeV scale where gravity sets in.

- in most cases: SM-like Higgs sector but properties possibly affected
- but in some cases, there might be no Higgs at all (Higgsless models)....
 Strong interactions/compositness: the Higgs is not an elementary scalar.
- H is a bound state of fermions like for the pions in QCD...
- H emerges as a Nambu–Goldstone of a strongly interacting sector.. _

IRFU Saclay, 04/09/2012 T

The day after the Higgs... – A. Djouadi – p.3/18

1. Before the 4th of July

and along the avenues, many possible streets, paths, corners...

Which scenario chosen by Nature? The LHC supposed to tell!

IRFU Saclay, 04/09/2012

The day after the Higgs... – A. Djouadi – p.4/18

2. The 4th of July...

Higgs observed by ATLAS and CMS! A triumph for high-energy physics. Indirect constraints from EW data ^a H contributes to RC to W/Z masses:

$$\mathcal{W}_{\mathbf{Z}} = \mathcal{W}_{\mathbf{X}} =$$

Fit the EW precision measurements, one obtains $\mathrm{M_{H}}=92^{+34}_{-26}$ GeV, or

$m M_{H} \lesssim 161$ GeV at 95% CL

compared with "observed" ${
m M_{H}}\,{=}\,125$ GeV A very non-trivial check of SM consistency! In 1995: top discovery with $m_t \,{pprox} \, 175$ GeV while best-fit in the SM is for same value: it was considered as a great achievement....

IRFU Saclay, 04/09/2012

The day after the Higgs... – A. Djouadi – p.5/18

2. The day after

Fit of all the LHC data \Rightarrow looks like the Higgs is SM–like

C. Grojean et al.

- Many scenarios are ruled out (Higgsless, gauge/fermio phobic, 4th gen.
- Many others are in great trouble: TC Higgs, composite Higgs
- Other scenarios OK, but leads to heavy new particle spectrum. example of Supersymmetry and the MSSM....

The day after the Higgs... – A. Djouadi – p.6/18

2. The day after

What should one do? Well, there is no choice....

- Hope someting will show up in full 2012 data...
- If not, at upgraded LHC with 14 TeV energy and 300/fb data?
- If not, a high luminosity LHC (3000/fb) will increase sensitivity!
- And in case of nothing still, go for the highest possible energy!

We must make full use of the LHC capabilities!

One hope: excess in $H\to\gamma\gamma$ stays!

- ullet light stau's and large $\mu an\!eta$
- light χ_1^{\pm} in non-univ MSSM
- possibility of light \widetilde{t} :
- \Rightarrow max-mixing: $\sigma(\mathbf{gg} \rightarrow \mathbf{h})$ suppressed.
- \Rightarrow no mixing: yes, but stops too heavy.
- BMSSM? Ellwanger etal, King etal., Kraml+Jiang+Gunion · · ·

Common features: some light sparticles are around the corner!

The day after the Higgs... – A. Djouadi – p.8/18

3. Measurement of Higgs properties at LHC

Now that Higgs is found (and nothing else yet): is HEP "closed"? No! Need to check that H is indeed responsible of sEWSB (and SM-like?) Measure its fundamental properties in the most precise way:

- its mass and total decay width,
- ullet its spin–parity quantum numbers and check $J^{\rm PC}=0^{++}$,

• its couplings to fermions and gauge bosons and check that they are indeed proportional to the particle masses (fundamental prediction!),

 \bullet its self–couplings to reconstruct the potential $V_{\rm H}$ that makes EWSB.

Possible for $M_{H}\,{\approx}$ 125 GeV as all production/decay channels useful!

Mass precisely measured but total width out of reach (invisible decays?)

IRFU Saclay, 04/09/2012

The day after the Higgs... – A. Djouadi – p.10/18

3. Higgs properties: J^{PC} numbers

• Higgs spin:

 $H\!\rightarrow\!\gamma\gamma$: rules out J=1 and fixes C=+.

- not generalizable to $H\!\leftrightarrow\! \mathbf{gg}(\mathbf{g}\!\approx\!\mathbf{q})$
- other possibility left, ex: J=2 (radion).
- Higgs parity:

–
$$\mathbf{H} \!
ightarrow \! \mathbf{Z} \!
ightarrow \! 4 \ell^{\pm}$$
 rules out CP–odd.

– spin–correlations in $gg \mathop{\rightarrow} H \mathop{\rightarrow} WW^*.$

But need to check that H is pure CP-even

- challenging precision measurement,
- roughly doable in $H \rightarrow VV \rightarrow 4\ell^{\pm}$ correlations.
- also in $d\Gamma(H\!\rightarrow\!ZZ^*)/dM_*$

Drawback: If H is mostly CP-even,

rates for $\mathbf{A} \to \mathbf{V} \mathbf{V}$ are too small...

More convincing: look at Hff couplings

Possible but challenging channels:

$$\mathbf{gg} \!
ightarrow \! \mathbf{H} \!
ightarrow \! au au$$
 or $\mathbf{pp} \!
ightarrow \! \mathbf{t\overline{t}H} \!
ightarrow \! \mathbf{ttbb}$

$d\Gamma(H\!\rightarrow\! ZZ^*)/dM_*$ @thresh

3. Higgs properties: Higgs couplings

- Look at various H production/decay channels and measure $N_{\rm ev} = \sigma \times BR$ LHC with $\mathcal{L} = 300$ fb⁻¹ (more statistics?)
- Large errors mainly due to:
- experimental: stats, system., lumi...
- theory: PDFs, HO/scale, model dep... total error about 20–30% in $gg \to H$ contaminates also VBF/HZ (30%)...
- \Rightarrow ratios of $\sigma \times BR$: many errors drop out!
- \bullet One obtains width ratios: $\Gamma_{\mathbf{X}}/\Gamma_{\mathbf{Y}}$
- Theory assumptions (no invisible, SU(2) invariance, some couplings are known,...)

 $\begin{array}{l} \Rightarrow \text{ translate into } \Gamma_X \propto g^2_{HXX} \text{ with} \\ \text{precision: } \Delta g_{HXX} = \frac{1}{2} \frac{(\Delta^{\exp}\Gamma + \Delta^{\mathrm{th}}\Gamma)}{\Gamma} \\ \Rightarrow \text{ reasonable precision of order 10\%} \\ \text{not bad... but is it really enough?} \end{array}$

3. Higgs properties: Higgs self-couplings

Important couplings to be measured: $g_{H^3}, g_{H^4} \Rightarrow$ access to V_{H} . • $\mathbf{g}_{\mathbf{H^3}}$ from $\mathbf{pp}
ightarrow \mathbf{HH} + \mathbf{X} \ \Rightarrow$ SM: pp \rightarrow HH +X • g_{H^4} from pp \rightarrow 3H+X, hopeless. LHC: σ [fb] $gg \rightarrow HH$ **Relevant processes for HH prod:** only $gg \rightarrow HHX$ relevant... $WW+ZZ \rightarrow HH$ WHH+ZHH $pp \rightarrow l^{\pm} l^{\prime \pm} + 4j$ 3 $\sqrt{s} = 14 \text{ TeV}$ 95% CL limits WHH:ZHH ≈ 1.6 300 fb^{-1} $\Delta\lambda_{\rm HHH} = (\lambda - \lambda_{\rm SM})/\lambda_{\rm SM}$ WW:77 ≈ 2.3 600 fb^{-1} 180 190 M_H[GeV] 140 160 120 • $\mathbf{H} \rightarrow \gamma \gamma$ decay too rare, 3000 fb^{-1} ${\ \bullet \ } H \to b \overline{b}$ decay not clean SM • $\mathbf{H}
ightarrow \mathbf{WW}$ at low $\mathbf{M_{H}}$? 3000 fb^{-1} _600 fb⁻¹ 300 fb⁻¹ - parton level analysis... - look for $2\ell^{\pm}, 3\ell^{\pm}+\nu$ +jets+ 140 160 180 200 m_H (GeV) - needs very large luminosity.

IRFU Saclay, 04/09/2012

The day after the Higgs... – A. Djouadi – p.13/18

4. The Higgs at the LC

IRFU Saclay, 04/09/2012

The day after the Higgs... – A. Djouadi – p.14/18

4. Higgs properties: LEP3?

Some people advocate a (quick/cheap) 250 GeV LC, a kind of LEP3... not a very good idea to my (humble) opinion....

- you can indeed precisely measure Higgs couplings to VV and ff,
- but no access to the HHH and Htt couplings: need at least 500 GeV! And you cannot do top physics! Why is it so important???
- $\lambda\!=\!M_{\rm H}^2/2v^2$ increases with energy Q

Small λ : top,W,Z contributions dominant $\frac{\lambda(Q^2)}{\lambda(v^2)} \approx s1 + 3 \frac{2M_W^4 + M_Z^4 - 4m_t^4}{16\pi^2 v^4} \log \frac{Q^2}{v^2}$ tops lead to $\lambda(0) < \lambda(v)$: unstable vacuum SM valid only if v=EW-min, ie $\lambda(Q^2) > 0$ $\Lambda_C \sim M_P \Rightarrow M_H \gtrsim 129 \ GeV!$ for $m_t = 173 \ GeV$; but what is m_t^{TEV} ?? Unambiguous m_t only from $\sigma(tt)$ – value at TEV/LHC not precise...

– need ILC $\Delta m_t = 0.2$ GeV!

Only way to check stability/NP: $\sqrt{\mathrm{s}}\gtrsim350$ GeV!

The day after the Higgs... – A. Djouadi – p.15/18

4. The Higgs at the LC: CLIC?

Measurements which need the high cross section of $e^+e^- \rightarrow H \nu \bar{\nu}$: • BR(H $\rightarrow \mu^+\mu^-) \propto 10^{-4}$ Higgs couplings to 2d generation • BR(H $ightarrow \gamma$ Z) $\propto 10^{-3}$ complementary/same(?) to H $\gamma\gamma$ – Anomalous Higgs couplings some (eg. CPV) need high \sqrt{s} Trilinear Higgs couplings $e^+e^- \rightarrow W^*W^* \rightarrow HH\nu\nu$ - stats better than HZ@500 GeV – additional info/separation (θ^*) with a high lumi needed, a few ab^{-1} Not much gain compared to ee500 in SM but what about NP scenarios?

4. The Higgs of the ILC: CLIC

 $\overline{\,\textbf{5}\,}$ Higgs states: $\mathbf{h},\mathbf{H},\mathbf{A},\mathbf{H}^{\pm}$

 \bullet For h , same as SM Higgs $H, A, H^{\pm}:$ additional channels:

Decoupling: $M_H \approx M_A \approx M_{H^\pm} \gg M_Z$ Kinematical reach: $M_\Phi \approx \frac{1}{2}\sqrt{s}$ At CLIC: $M_\Phi \approx 1.5$ TeV (beyond LHC).

Cascade decays of SUSY particles
– charginos/neutralinos to Higgs
(probes H couplings to sparticles)
– stop2 to stop1 and a Higgs
(good measurement of trilinear At)

IRFU Saclay, 04/09/2012

The day after the Higgs... – A. Djouadi – p.17/18

 μ [GeV]

 μ [GeV]

4. Higgs properties: LC?

Personal opinion:

An e^+e^- machine with pprox 500 GeV energy will do the best job!

Ono+Miyamoto

Yasui et al.

The turn of Japan/Asia to take the lead for a 400–500 GeV LC? They seem to be rather interested. Il faut leur dérouler le tapis rouge!

IRFU Saclay, 04/09/2012

The day after the Higgs... – A. Djouadi – p.18/18