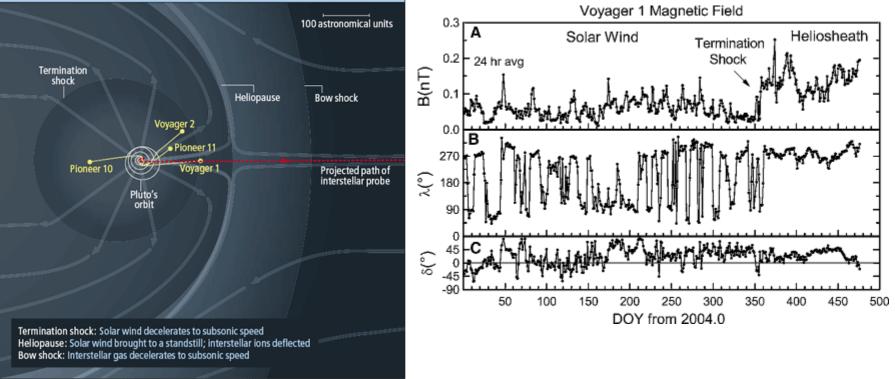
Neutron Monitor (NM) data to monitor GCR data

I. Monitoring the time variability of GCRsII. From GCRs to neutron monitor count ratesIII. Conclusions



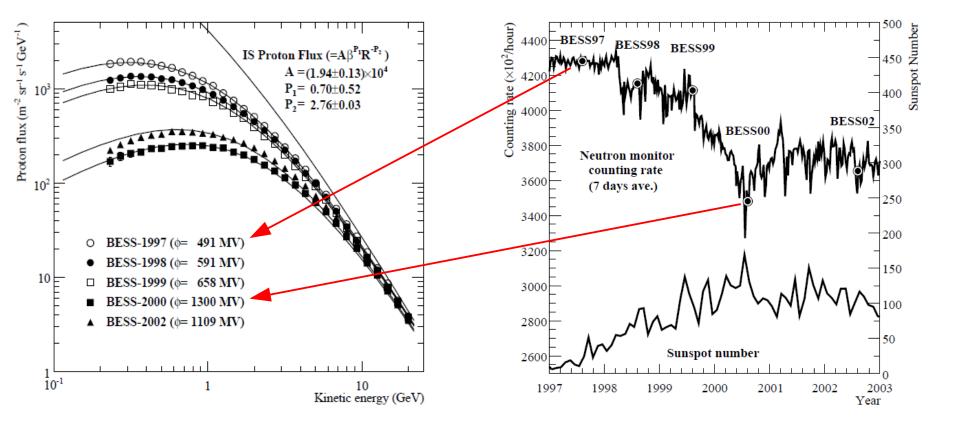
David Maurin (LPSC) dmaurin@lpsc.in2p3.fr Nuclear physics for GCRs in the AMS-02 era 4/12/2012

Solar cavity: a complex and varying environment

THE OUTER LIMITS

▼ An interstellar probe would explore the boundary region of the solar system, where gas flowing out from the sun pushes back the ambient interstellar gas. It would have the speed, endurance and instruments that the Pioneer and Voyager probes never did.

LUCY READING-IKKANDA


 \rightarrow In situ measurements scarce and difficult to connect easily to CR fluxes

I. Time variability

Solar cavity: simple modulation models

Shikaze et al., APh 28, 154 (2007)

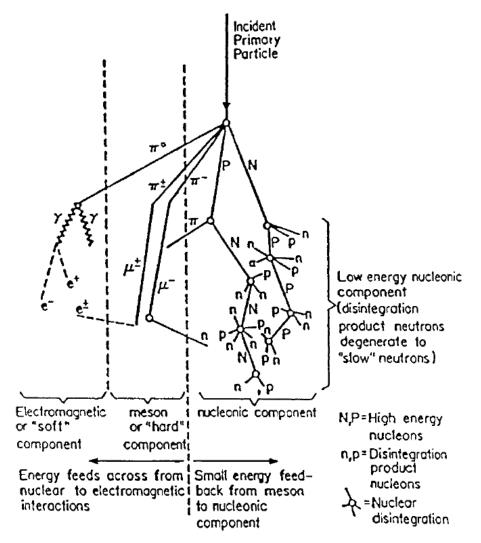
BESS (balloon-borne experiment)

→ Neutron monitors good proxy for Solar modulation (but not the only ones, see next talks)

I. Time variability

Questions in the AMS-02 context

- From AMS-02 point of view:
 - \rightarrow Can we predict AMS-02 flux time-variability from NMs?
 - \rightarrow What is the TOA flux variation range in a given period?
 - \rightarrow Should we exclude periods of intense activity ? Based on what criteria?
- For the space weather community (over short and long periods):


 \rightarrow AMS-02 protons is another monitor of the Solar activity \rightarrow NMs, ground μ studies, etc. may gain from monitoring p flux?

• And more globally, in the context of Solar modulation:

 \rightarrow Access to IS spectra and fit of Solar modulation parameters \rightarrow Study of charge dependence for Solar modulation I. Monitoring the time variability of GCRsII. From CRs to neutron monitor count ratesIII. Conclusions

The invention of NMs in the 50's (John A. Simpson)

Simpson, Space Sci. Rev. 93, 11 (2000)

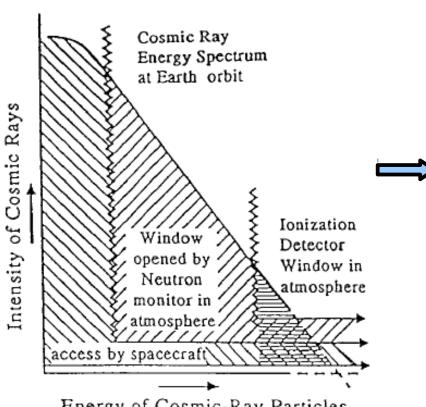
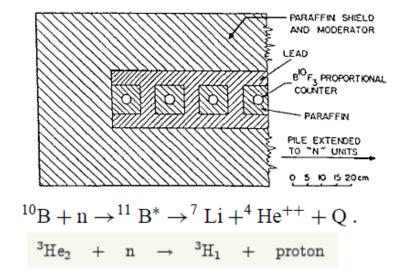


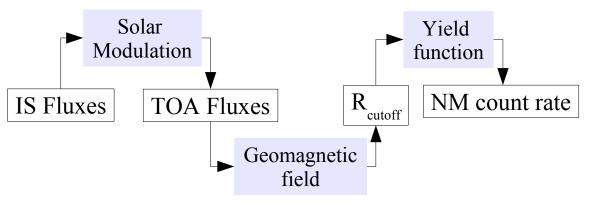
Figure 1. Schematic representation of the typical development of the secondary cosmic radiations within the atmosphere arising from an incident primary particle (Simpson *et al.*, 1953b).


II. From CRs to neutrons

The invention of NMs in the 50's (John A. Simpson)

Simpson, Space Sci. Rev. 93, 11 (2000)

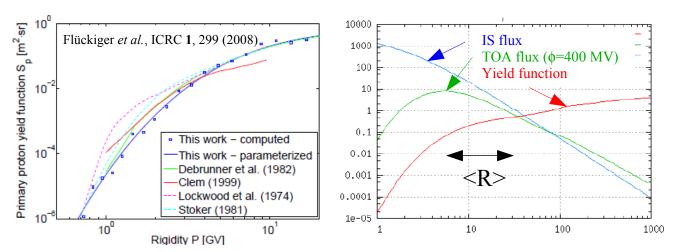
Energy of Cosmic-Ray Particles



 \rightarrow NMs come cheap, immune to low energy SCRs, active since the 50's (more in next talks)

II. From CRs to neutrons

From IS fluxes to NM count rates: Yield function



$$N(P_c, z, t) = \int_{P_c}^{\infty} \underbrace{\sum_{i} S_i(P, z) \cdot J_i(P, t) \cdot dP}_{W_T(P, z, t)}$$
(1)

- *i* primary particle type (proton or α);
- *P* primary particle rigidity;
- P_c effective vertical cutoff rigidity;
- z atmospheric depth over the NM;
- J_i primary particle rigidity spectrum;
- W_T total differential response function.

\rightarrow Yield function: MC (see next talk) or parametric

Clem & Dormann, Space Sci. Rev. **93**, 335 (2000) Nagashima *et al.*, Nuovo Cim. **12**, 113 (1989) Flückiger *et al.*, ICRC **1**, 299 (2008)

$$S_i(P, z) = \sum_{\substack{j \\ j}} \iint A_j(E, \theta) \cdot \Phi_{ij}(P, z, E, \theta) \cdot dE \cdot d\Omega$$

secondary particle type (n, p, μ^{\pm}, π^{\pm});

- $\begin{array}{ll} A_j & \mbox{effective area (efficiency \times geom. area}); \\ \Phi_{ij} & \mbox{differential flux of secondary particles} \end{array}$
 - per primary;
- E secondary particle energy;
- θ , d Ω secondary particle angle of incidence and solid angle.

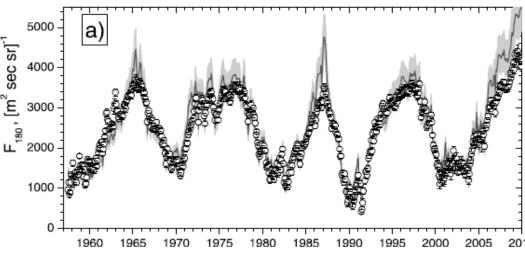
→ NMs at different altitude (depth) and position (Rc) sample slightly different <R>

From NM count rates to ϕ , and fluence

• Use previous ingredients

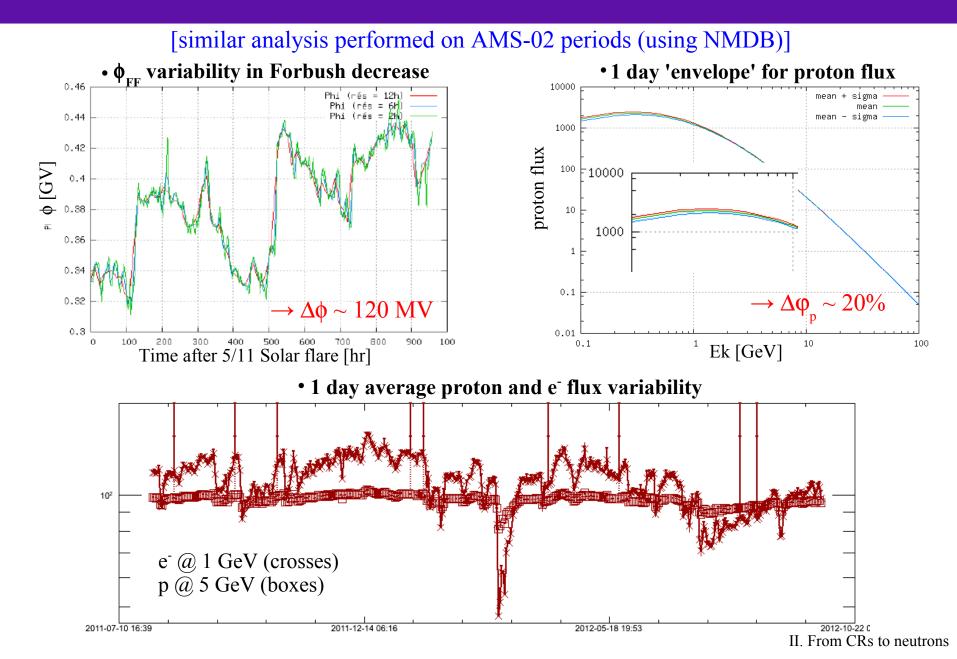
Usoskin *et al.*, Solar Physics **207**, 389 (2002) Usoskin *et al.*, J. Geophys. Res. **110**, A12108 (2005) Usoskin *et al.*, J. Geophys. Res. **116**, A02104 (2011) §

Source of uncertainties


- \rightarrow IS flux (form not known)
- \rightarrow Yield function
- \rightarrow Absolute normalisation of NMs

Comparison to fluence

- \rightarrow 80000 launches (Lebedev institute)
 - → Reconstruction method fairly successful


Figure 7. The reconstructed modulation parameter ϕ (solid line) together with 68% confidence intervals (grey shading). Two large black dots denote the reference periods (see text). Open dots correspond to some fragmentary estimates of the cosmic ray spectrum from balloon or space-borne experiments.

 \cap , Figure 3. (a) Time profile of the cosmic ray flux (>180 MeV/nuc) F₁₈₀ as measured at balloons (open dots with error bars) and computed from NM-data (solid curve with grey shading denoting 1σ uncer-

II. From CRs to neutrons

From NM count rates to fluxes: AMS-02 period

I. Monitoring the time variability of GCRsII. From CRs to neutron monitor count ratesIII. Conclusions

Conclusions

- From AMS-02 point of view:
 - Can we predict AMS-02 fluxes time-variability from NMs?
 - \rightarrow At first order, we should be able to do that
 - What is the TOA flux variation range in a given period?
 - \rightarrow Depends on the Solar activity, but we can calculate it
 - Should we exclude periods of intense activity ? Based on what criteria?
 - \rightarrow Needs to be explored...
- For the space weather community (over short and long periods):
 - \rightarrow AMS-02 will be another useful tool to monitor Solar activity and impact on IS flux
- And more globally, in the context of Solar modulation:
 - Access to IS spectra and fit of Solar modulation parameters
 - Study of charge dependence for Solar modulation

Can be answered only with AMS-02 data

→ But need to improve Yield functions, better understanding of NMs relative normalisation, better Solar modulation models... and the use of AMS-02 data!