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Outline

✔ Sun environment : heliosphere, magnetic field

✔ Solar activity monitoring

✔ Solar flares

✔ Modulation of Cosmic Rays

◮ Parker equation

◮ Force-field approximation

◮ 1D vs Force-field

✔ Prospects
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Cosmic rays : solar modulation

PAMELA measurements of protons fluxes

between 2006 and 2009

a decrease on the proton fluxes,
specially at low energies, is observed
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Cosmic rays : solar modulation

PAMELA measurements of protons fluxes

between 2006 and 2009

a decrease on the proton fluxes,
specially at low energies, is observed

Clem et al. JGR 105 (2000)

Charge sign dependence...
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Sun
activity
solar wind, magnetic field, flares
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Heliosphere
✔ A region of space influenced by the sun

and its expanding Corona : solar wind

◮ size : 100-150 AU

✔ A magnetic cavity in the interstellar wind
influenced by :

◮ solar wind

◮ solar magnetic field

✔ The heliospheric Termination Shock (TS)
and heliosheath are the interfaces of the
heliosphere with the surrounding
interstellar medium

✔ Voyager 1,2 are currently exploring the
heliosheath (between TS and
heliopause)
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Solar wind
✔ A continuous flow of charged particles

from SUN with velocities around 400
Km/s

◮ mainly composed of electrons and

protons

◮ flux ∼ 1012 particles/m2.s

◮ first continuous observation made by

Marina 2 spacecraft (1962)

◮ detailed measured by the spacecraft

Ulysses (three orbits)

✔ At solar minimum (1995) solar wind
faster on poles than in equator obs (fig)

✔ Around 4 days to reach Earth (1 AU)

✔ Carries the sun magnetic field to the
interplanetary space

eclipse
1991
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Solar magnetic field
✔ The SUN rotates with a period of

≃ 27.27 days (Carrington rotation -
started on Nov 9, 1853)

✔ The magnetic field at the solar magnetic
poles approximates that of a dipole

✔ Theres exist a progressive offset
between the SUN magnetic and
rotational axes as the SUN activity goes
from minimum to maximum

◮ near solar maximum the magnetic field
assumes a much more complicated

structure

✔ There exist a a reversal of the magnetic
field polarity every 11 years at solar
maximum

◮ polarity +, field lines going away from
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The archimedian spiral

✔ very high electric conductivity of the solar wind

plasma carries SUN magnetic field into the
heliosphere

◮ B ∼ nT

◮ SUN rotation gives the magnetic field the

form of an Archimedian spiral (Parker spiral)

~B =
B0

r2

»

~er −

Ω(r − rA)

V
cos θ~eφ

–

h

1 − 2H(θ − θ
′

)
i

✔ There exist a magnetically neutral layer

(heliospheric current sheet) that separates the
large-scale regions of opposite magnetic polarity

◮ flat and coincident with heliospheric equator
at solar minimum

◮ warped with a tilt angle (offset between axes)
as the SUN activity increases
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Solar activity indicators
Neutron monitors

✔ primary cosmic rays (protons) interact with the atmosphere
and produce secondary neutrons

✔ the neutron component is measured by neutron monitors at
different geographical altitudes and latitudes
different geomagnetic cutoffs

✔ detection by proportional tubes surrounded respectively by
high-Z (lead) and low-Z (polyethylene) materials to amplify
secondary neutron component and shield background
radioactivity

✔ measurement of the neutron rate provides information of CR intensity variation

Sunspots

✔ the number of sun dark spots (cooler than
surrounding photosphere) monitors the Sun
activity
can be as large as 105 Km

✔ 11 year periodicity

✔ solar cycle : from a sunspot minimum to the
next one (1st solar cycle : 1755-1766)
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Solar cycles
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Solar flares
✔ A solar flare is a localized explosive release of

energy that appears as a sudden, shortlived
brightening of an area in the chromosphere

◮ release of electromagnetic radiation and
energetic particles

◮ solar brilliance usually measured in optical and
X-rays

✔ Classified according to the energy released
X-ray (1-8 Angst) index

E [ergs/cm2.s]

C = 10−3 M = 10−2 X = 10−1

✔ Forbush decrease : cosmic rays flux present a fast
decrease (March 2012, NM flux varied of ∼ 10%)
followed by a recovering periof of ∼ 5 days

◮ although more common near solar maximum,
occur through all the solar cycle

✔ Solar flares visible on 2012 : Jan 27 (X1.7), March
7 (X5.4), July 12 (X1.4),
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Cosmic Rays
modulation
Parker equation, Force-Field approx
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Cosmic Rays modulation
✔ The flux of travelling galactic cosmic rays experience a modulation process

when pass in the heliosphere

◮ it results from interactions with the solar wind plasma and the embedded
solar magnetic field

✔ Interaction processes in heliosphere :

◮ convection in the solar wind

◮ drift motion in non-uniform magnetic field

◮ diffusion in the heliospheric magnetic field inhomogeneities

◮ adiabatic cooling , i.e. change in the momentum space of particles

✔ Transport equation results from continuity principle

d

dt
f(~r, ~p, t) + q = 0

f , particle distribution function

q, creation/destruction of particles inside phase-space volume
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Transport Parker equation

∂f

∂t
=− ~Vs ·

~∇f Wind plasma convection

− ~VD · ~∇f particle drift

+ ~∇ ·

(

KS
· ~∇f

)

particle diffusion

+
1

3

(

~∇ · ~Vs

) ∂f

∂ lnP
Rigidity change

+ Q sources/sinks

f(~r, p, t) distribution function of Galactic CRs (part/m3.GV )

P = pc
Ze

rigidity (GV)

~r position vector wrt to the Sun

From dist func ( f ) to differential
intensity ( J)

JP = vP 2f(~r, p, t) (part/m2.sr.s.GV )

JT n = A
Z

P 2f(~r, p, t) (part/m2.sr.s.GeV/n)

Drift velocity depend on particle

charge (Z) and solar magnetic

field polarity (A)
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Force field solution
✔ quasi-stationary state ( ∂f

∂t
= 0)

✔ no sources (Q = 0)

✔ radial solar wind (~Vs = Vs~er)

✔ isotropic diffusion coefficient

✔ density distrib function spherically symmetric, f(r)

✔ no particle drift

∂f

∂r
+

Vs

3

P

K

∂f

∂P
= 0

h

Vs
3

P
K

i

= GV/m (E field)

K = βK1(r)K2(P )

dP

dr
=

Vs

3

P

K
→

Z PH

P

β(P ′)K2(P ′)

P ′
dP ′ =

Z rH

r

1

3

Vs(r′)

K1(r′)
dr′

| {z }

φ(r),force-field param

Assuming K2 ∝ P and β ∼ 1

⇒ PH − P = φ ⇒ pH − p = Zeφ ≡ Φ

solutions : f(r, P ) = C along contours of the charact. eq. (dP/dr)

f(r1AU , pH − Φ
| {z }

p

) = f(rH , pH)

⇒
J1AU (p)

JLIS(pH )
=

“

p
pH

”2
= E2

−M2

E2
H−M2

Vs ∼ 400 Km/s

K ∼ λv ∼ (1AU)3 105 Km/s ∼

105 (Km/s)AU

φ ∼
400
105

(102AU) ∼ 0.4GV
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GCRs Force Field modulation

J(r, E) = JLIS(E+Φ)
E2 − M2

(E + Φ)2 − M2
J(r, T ) = JLIS(T + Φ)

T (T + 2M)

(T + Φ)(T + Φ + 2M)

AMS, 1998
(φ = 530 ± 15 MV)

PAMELA

E, detected energy near Earth Φ = Zeφ, energy lost by particle in heliosphere

LIS Galprop (PAMELA)
LIS Burger,2000 (AMS)

JT =
aP (T )−2.78

1+bP (T )−2.51

a = 19 103/m2.s.sr.GeV/n

b = 0.48
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GCRs Force Field modulation
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LIS fluxes
LIS fluxes are a source of uncertainty...
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Solar modulation : 1D solution
✔ quasi-stationary state (∂f

∂t
= 0)

✔ no sources (Q = 0)

✔ radial solar wind (~Vs = Vs~er)

✔ isotropic diffusion coefficient :
K = K0 K1(r) K2(P )

✔ density distrib function spherically
symmetric, f(r)

✔ no drift

Vs

∂f

∂r
−

1

r2

∂

∂r

(

r2K
∂f

∂r

)

−
1

r2

∂

∂r

(

r2V
) ∂f

∂ ln P
= 0

V0 = 400Km/s

Vs = V0

`

1 − e−13(r/AU)
´

K = 4.38 1022β (P/GV ) [cm2/s]

✔ partial differential equation to solve : 2nd order in space, 1st order in
energy

✔ 2 boundary conditions in space (r0, rH) and one initial condition (at
high energies JT (r, p) = JLIS(p))

✔ numerical solution stepping in r and lnP
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1D solution and AMS01
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1D solution and AMS01
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CR modulation : higher order solutions
✔ The Force-Field analytical and the numerical 1D solutions of

the Galactic Cosmic Rays transport equation do no include
any physics related to the heliosphere magnetic field

✔ The lowest-order model that can include the archimedian

shaped magnetic field is a 2D (r, θ) solution of the transport

equation

◮ solar rotation effects are averaged

[R.A. Burger et al., ApJ674 , 511 (2008)]

✔ Stochastic solutions of the multi-dimensional transport

equation started to emerge in the last years taking profit from

the computing power available in nowadays computers

[C.Pei et al., Proc. 31st ICRC , Paper731 (2009)]
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Conclusions and Prospects
✔ The 23/24 solar cycle minimum (2008-09) was unusually long

unprecedented high NM readings were observed together with very high CRs
fluxes measured by ACE/CRIS and PAMELA

✔ The basic physics processes entering on solar modulation are understood and

provide a good description of the CRs modulation (Parker eq)

✔ LIS fluxes remain a source of uncertainties for solar modulation models

Voyagers hopefully will provide direct mesurements of LIS

✔ Disentangle the contribution of the different drivers of Solar modulation (tilt

angle, diffusion and drift balance, ...) only possible if observations at different
times and different places of the heliosphere are available

current understanding : drift prevails at solar minima and diffusion at maxima

✔ The presence in space of two particle identification spectrometers, PAMELA
(2006-) and AMS (2011-) allow to measure very precisely CR fluxes

◮ time monitoring of the charge-sign effects (e+/e−, p̄/p)

◮ cross-calibration of neutron monitors and better knowledge of yield

functions

Fragmentation Workshop (LPSC, 04 Nov 2012) Fernando Barao (IST/LIP) (21)


	Outline
	Cosmic rays: solar modulation 
	Cosmic rays: solar modulation 

	Heliosphere
	Solar wind
	Solar magnetic field
	The archimedian spiral
	Solar activity indicators
	Solar cycles
	Solar flares
	Cosmic Rays modulation
	Transport Parker equation
	Force field solution
	Force field solution

	GCRs Force Field modulation
	GCRs Force Field modulation

	LIS fluxes
	Solar modulation: 1D solution
	1D solution and AMS01
	1D solution and AMS01

	CR modulation: higher order solutions
	Conclusions and Prospects

