

Overview of Galactic Cosmic Rays

Fiorenza Donato Department of Physics, Un. Torino

"Nuclear physics for Galactic Cosmic Rays in the AMS-02 era" Grenoble, 03.12.2012

Enrico Fermi!

On the Origin of the Cosmic Radiation, Phys. Rev. 75, 1169–1174 (1949)

Dec 4 1948 notations Theory of cosmic rays a) mergy arguired in magnetic fields absorption mean free path 1 = 10²⁶ cm a) mengy arquired in collisions against cosmic magnetic fields Absorption time T = 3×10¹⁵ years Mon relativistic case MV² Scattering meson free path 2 Scattering " " time Z Time - energy relationship M=mass of particle V=velocity of moving field
(Proof 2 Head on collision gives every gain $w = Mc^2 e^{\frac{1}{2}\beta^2} \qquad \beta = \frac{V}{c} \approx 10^{-4}$ $\frac{M}{2}\left(\frac{v+2V}{2}\right)^{2} - \frac{Mv^{2}}{2} = \frac{M}{2}\left(\frac{4}{4}vV+4V^{2}\right) =$ $t = \frac{t}{\beta^2} \log \frac{w}{Mc^2}$ $= M(2VV + 2V^2) \quad Prob = \frac{v+V}{2v} \quad Prob. distribution in there age$ Remaining after collision (prob = $\frac{v-V}{2v}$) gives every $e^{-\frac{v}{T}} \frac{dt}{T} = prob$ Again $M(-2vV + 2V^2)$ $e^{-\frac{1}{T}} \frac{dt}{T} = prob of age t$ $z - de^{-\frac{5}{T}}$ average gain order MV2 $e^{\pm} = \left(\frac{Me^2}{W}\right)^{\pm} \frac{\tau}{T\beta^2}$ $\frac{\tau}{W} = \frac{\tau}{W} \left(\frac{Me^2}{W}\right)^{\pm} \frac{\tau}{T\beta^2} \frac{dw}{dw}$ $\frac{1}{T\beta^2} = \frac{\tau}{T\beta^2} \frac{Me^2}{W} \frac{1}{W} \frac{1}{T\beta^2}$ Relativistic : order w B2 Follows $1 + \frac{T}{T\beta^2} = 2.9 \qquad \frac{T}{T\beta^2} = 1.9$

GALACTIC COSMIC RAYS (GCRs)

charged particles diffusing in the galactic magnetic field Observed at Earth with E~ 10 MeV/n - 10³ TeV/n

Primaries = present in sources: Nuclei: H, He, CNO, Fe; e-, e+ in SNR (pulsars) e⁺, p⁺, d⁺ from Dark Matter annihilation Secondaries = NOT present in sources, thus produced by spallation of primary CRs (p, He, C, O, Fe) on ISM Nuclei: LiBeB, sub-Fe; e+, p+, d+; ...

CRs production and propagation history Charged nuclei - isotopes - antinuclei - leptons

- 1. Synthesis and acceleration
- * Are SNR the accelerators?
- * How are SNR distributed?
- * What is the abundance at sources?
- * Are there exotic sources out of the disc?

2. Transport in the Milky Way

* Diffusion by galactict B inhom.

- * electromagnetic losses - ionization on neutral ISM
 - Coulomb on ionized plasma
- * Convection
- * Reacceleration

4. Solar Modulation

* Force field approximation?* Charge-dependent models?

3. Nuclear interactions CRs&ISM:

- * Production of secondary nuclei
- * Destruction of nuclei on the ISM

Characteristic times and distances

Which cosmic ray recent data?

Antimatter: e+, p⁻, D⁻ → searching for DM hints

<u>Secondary/Primary</u> nuclei: B/C mainly \rightarrow fixing propagation models in the Galaxy

<u>Primary</u> nuclei: p, He, C, Fe, ... → testing source properties (hardening?)

<u>Leptons</u>: $e^{-}(e^{-}+e^{+})$

 \rightarrow testing the local ISM/SNR environment

Transport equation in diffusion models

Diffusive models

Jopikii & Parker 1970; Ptuskin & Ginzburg, 1976; Ginzburg, Khazan & Ptuskin 1980; Weber, Lee & Gupta 1992,

Some recently developped diffusive models:

- 1. Maurin, FD, Taillet, Salati ApJ 2001; Maurin, Taillet, FD A&A 2002; Putze, Derome, Maurin 2010
- 2. Strong & Moskalenko ApJ 1998; Moskalenko, Strong, Ormes, Potgieter, ApJ 2002
- 3. Shibata, Hareyama, Nakazawa, Saito ApJ 2004; 2006
- 4. Jones, Lukasiak, Ptuskin, Webber ApJ 2001 (Modified Weighted-slab technique)
- 5. Evoli, Gaggero, Grasso, Maccione JCAP 2008; Di Bernardo et al. Astrop.Ph. 2010
- Diffusion coefficient $K(R)=K_0\beta R^{\delta}$
- Convective velocity V_c
- Alfven velocity V,
- Diffusive halo thickness L
- Acceleration spectrum Q(E)= p^{α}

 K_0 , δ, V_c , V_A , L, (α)

AT LEAST!

Diffusion on magnetic inhomogeneities

Acceleration by shock waves

Leptons: absolute fluxes & ratio

Antiprotons: absolute flux and ratio

Pamela Coll, PRL 2010; BESS flights

Nuclei from He to Fe

CREAM Coll., ApJL 2010 PAMELA Coll., Science 2011 10 Flux × E^{2.7} (m² s sr GeV/n) ⁻¹ × (GeV/n)^{2.7} ق 10² 10 С $0 \times 5 \times 10^{-2}$ Flux x E^{2.5} (m²-s-sr)⁻¹ (GeV/nucleon)^{1.5} 0, 1 $\times 5 \times 10^{\circ}$ $Mg \times 10^{-4}$ 10 IMAX (1992) CAPRICE (1994) $Si \times 5 \times 10^{-6}$ CAPRICE (1998) MS (1998) 10 ATIC-2 (2007) 3ESS (2002) CREAM (2004-2006) JACEE (1994) 10² Fe×10-7 RUNJOB (1995-1999) PAMELA 107 PAMELA systematic error band 10 10³ 10² 10⁴ 10 1 10^{2} 10⁵ 10⁵ 101 10 10³ O⁶ E (GeV/n) Energy (GeV/nucleon)

Light nuclei: fluxes and ratios

AMS-01 Coll., ApJ 2011

Z<=2 Nuclei

¹H, ²H, ³He, ⁴He almost as powerful as B/C Noticeable effort on reliable cross sections

Propagation of CRs: MCMC results on B/C AND radioactive isotopes

Putze, Derome, Maurin A&A 2010

Low-energy positron fraction: new interpretation

Maccione 1211.6905

Explained by a charge-sign dependent 4D (3 space+energy) solar model

Observed primary features: new interpretations

Bernard et al. 1207.4670

Hardening due to local (~2 kpc) catalog SNRs and PSRs

Observed primary features: new interpretations Blasi, Amato, Serpico PRL 2012

Departure from power law spectra ("breaks") as a consequence of basic processes. @ 10 GeV: transition from transport dominated by advection with v_A to diffusion due to turbulence of the same CRs

@ 200 GeV: transition to diffusion due to external agents (SNR bubbles)

Secondaries in sources: predictions for AMS-02

Tomassetti & FD, A&A 2012

Secondary nuclei in SNRs - due to both re-acceleration and/or hadronic interactions - imply a hardening of the spectra. Degeneracy with δ. AMS-02 can break it (see talk by N. Tomassetti)

Where do we stand with CRs? I

Despite huge modeling uncertainties: We can predict many cosmic species with accuracy!

- Supernovae remnants are almost certainly the engines
- Diffusive models are probably realistic, even if oversimplified-
- The spectrum of the magnetic turbulence is fixed within a factor of 2
- The galactic disk seems sandwiched in a magnetic halo few kpc thick
- Some minor effects are present and necessary

A significant AMBIGUITY is left:

Among the galactic models
 Given a model, among the free parameters

Where do we stand with CRs? II

Despite the success to qualitatively reproduce CR data we need:

- More refined models for solar modulation:
 - Charge-dependence; solar polarity; realistic wind treatment
 - Use of data from solar probes (see session tomorrow!)
- More data on nuclear cross sections.
 - needed for different nuclei and isotopes at various energies (see session after this talk)

All these items touch the Dark Matter induced antimatter cosmic fluxes (see P. Salati's talk tomorrow)

Few open points (out of many!)

- Many data sets are not compatible
- Magnetic turbulence spectrum
- Isotropic/non isotropic diffusion? Anisotropy of CRs
- Demonstration that SNR are the accelerators
- Confirmation & understanding of slope changing in primaries
- \rightarrow Multiwavelength correlations

AMS-02 is expected to bring to CR astrophysics a breakthrough

by measuring nuclei & isotopes, hadrons & leptons, primaries and secondaries, over large energy band, in different solar activity levels