

R&D chip de lecture pour détecteur gazeux en vue d'un DHCAL auprès de l'ILC

Réunion électronique DHCAL France IPN Lyon

Renaud Gaglione

Institut de Physique Nucléaire de Lyon Bâtiment Paul Dirac 4 rue Enrico Fermi 69 622 VILLEURBANNE Cedex

15 février 2008

Plan

Introduction

Architecture

Carte de test et acquisition

Premiers résultats

Fonctionnalité

DACs

Chaîne complète RPC

Chaîne complète Micromégas

Bruit de déclenchement

Alimentation

Plan

Introduction

Architecture

Carte de test et acquisition

Premiers résultats

Fonctionnalité

DACs

Chaîne complète RPO

Chaîne complète Micromégas

Bruit de déclenchement

Alimentation

Cahier des charges

Etre compatible avec deux détecteurs pour les comparer dans des conditions similaires :

	GRPC	Micromégas
Charge	0.1~10 pC	1~100 fC
$C_{det}\ (1\ cm^2)$	80 pF	80 pF
t _r	2 ns	<2 ns
largeur	20 ns	<10 ns

...et respecter les caractéristiques temporelles du faisceau :

	Minimum	Nominal	Maximum
Nombre de bunchs	1320	2625	5120
Période (ns)	189	369	480
Répétition (Hz)	5		

Historique

1^{er} circuit:

 $4\ voies$ analogiques + blocs de test. Fondu printemps 2006. 25 circuits encapsulés. Testés. Concept validé.

2^e circuit:

64 voies numériques. Fondu printemps 2007. 6 circuits en cours de test.

3^e circuit:

64 voies numériques. Fonderie printemps 2008?

Plan

Introduction

Architecture

Carte de test et acquisition

Premiers résultats

Fonctionnalité

DACs

Chaîna asmanlista [

Chaîne complète RP(

Chaîne complète Micromégas

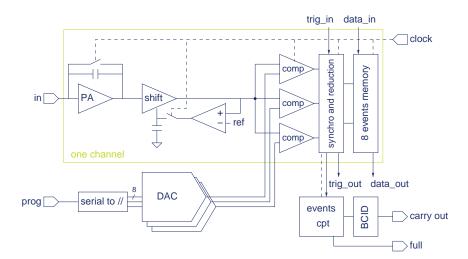
Bruit de déclenchement

Alimentation

Fonctionnement

Architecture synchrone sur les horloges (trains et paquets) de la machine :

Pendant les trains :


- Faisceau on : intégration des charges ;
- Faisceau off : comparaisons aux seuils, stockage des résultats.

Hors des trains :

- Mise en veille;
- Utilisation de l'horloge pour lire les données;
- Slow control.

Synoptique

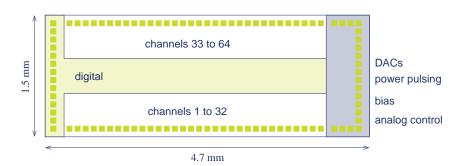
Analogiques:

- 2 blocs de 32 entrées analogiques;
- Sélection du gain;
- Mise en veille.

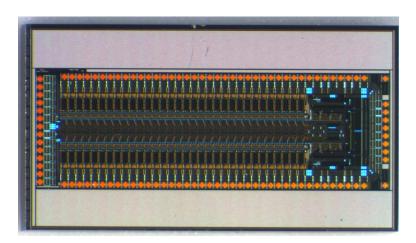
Numériques :

- Entrée/sortie des données séries;
- Horloge;
- Remise à zéro;
- Commande de lecture/écriture;
- Commandes des DAC (in, out, enable);
- Flags : fin de comptage du BCID, mémoire pleine.

Caractéristiques principales


- Technologie économique AMS CMOS 0.35 μm;
- Consommation <1 mW par voie + power pulsing à 1 % : $<10~\mu\text{W}$ par voie ;
- 2 gains : 100 mV/pC et 5 mV/fC;
- 3 seuils sur 8 bits pour 1 V (256 valeurs) chacun, soit 3.9 mV/DAC;
 - \rightarrow 40 fC/DAC et 0.8 fC/DAC
- BCID 12 bits (4096 valeurs);
- Mémoire interne de 8 évènements;
- Amincis à 300 μm pour faciliter l'intégration;
- Brochage facilitant le routage sur le détecteur : entrées de chaque côté.

Description physique


Run MPW CMP A35C7 $_$ 3. 6 puces encapsulées en boitiers CQFP-144 + 20 puces nues.

Seulement 7 mm^2 .

Introduction

Architecture

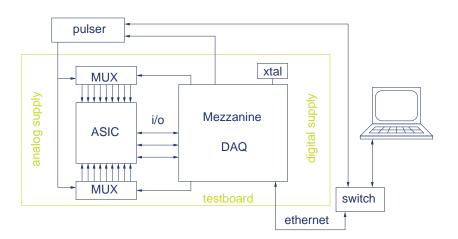
Carte de test et acquisition

Premiers résultats

Fonctionnalité

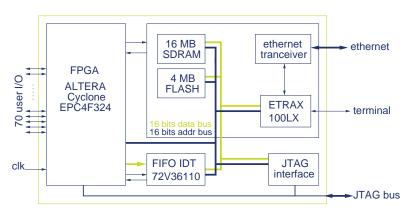
DACs

Chaîne complète RPO


Chaîne complète Micromégas

Bruit de déclenchement

Alimentation


Banc de test

Mezzanine d'acquisition

Mezzanine de la DAQ d'OPERA (C. Girerd).

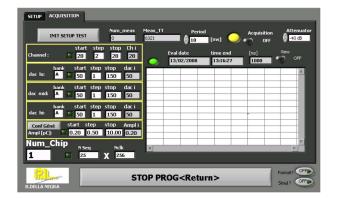
Implémentation

FPGA:

- FSM pour la programmation des DACs;
- FSM pour la lecture/écriture des ASICs;
- Gestion de l'excitation des voies;
- VHDL vectoriel qui permet de passer immédiatement à n circuits.

MCM:

- Interface ethernet et serveur TCP;
- Routines en C pour le jeu de commandes de l'ASIC;
- Scripts pour les initialisations.


Carte de test

Banc de test écrit en Labview sous MS Windows pour l'instant. Très facilement transposable dans n'importe quel langage supportant l'envoi de paquet TCP!

Plan

Introduction

Architecture

Carte de test et acquisition

Premiers résultats

Fonctionnalité

DACs

Chaîne complète RPC

Chaîne complète Micromégas

Bruit de déclenchement

Alimentation

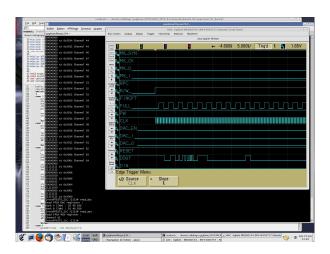
Plan

Introduction

Architecture

Carte de test et acquisition

Premiers résultats Fonctionnalité


DACs

Chaîne complète RPC
Chaîne complète Micromégas
Rruit de déclarchement

Alimentation

Premiers tests

Fonctionnel : la voie déclenchée est bien la voie excitée. Les BCID correspondent à la séquence envoyée.

Plan

Introduction

Architecture

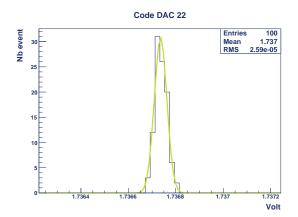
Carte de test et acquisition

Premiers résultats

Fonctionnalité

DACs

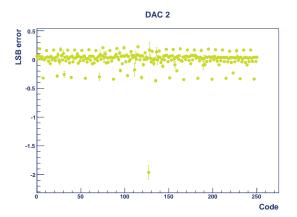
Chaîne complète Micromégas


Bruit de déclenchement

Alimentation

Bruit

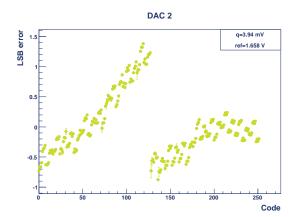
Histogramme du bruit des DACs. Exemple code 22 du DAC n° 1 :



 $\sigma \approx$ 50 μV pour l'ensemble des DACs testés.

Non-linéarité différentielle

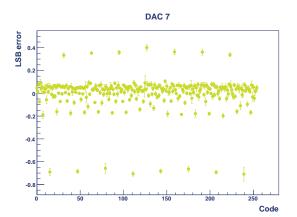
Exemple de résultat : DAC n° 2 :



DNL=2 LSB

Non-linéarité intégrale

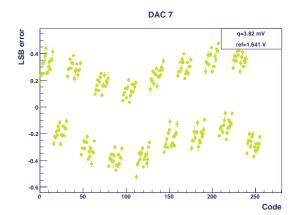
Exemple de résultat : DAC n° 2 :



Résultat du fit : q=3.94 mV

Non-linéarité différentielle

Exemple de résultat : DAC nº 7 :



DNL=1.2 LSB

Non-linéarité intégrale

Exemple de résultat : DAC n° 7 :

Résultat du fit : q=3.82 mV

Architecture

Carte de test et acquisition

Premiers résultats

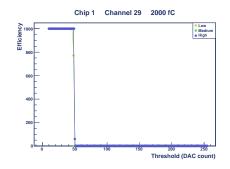
Fonctionnalité

DACs

Chaîne complète RPC

Chaîne complète Micromégas

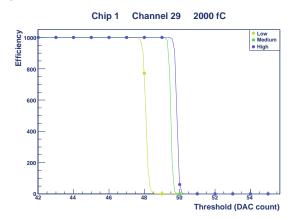
Bruit de déclenchement


Alimentation

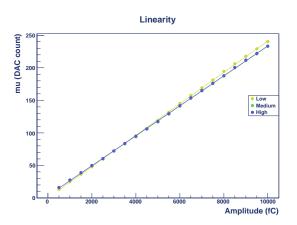
S-curve

Fit avec une distribution de Fermi-Dirac :

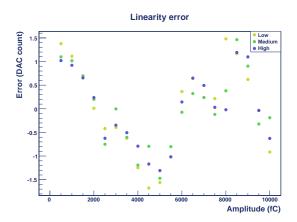
 $S(x) = \frac{max}{1 + e^{\frac{x-\mu}{w}}}$ μ : abcisse du point d'inflexion


w : pente de la courbe

S-curve (zoom)


C_{det}=40 pC

Passage de 100% à 0% <50 fC Dispersion entre les 3 seuils : 2 LSB, soit 80 fC



La dispersion entre les trois seuils dépend de la valeur des seuils : correction prévue !

L'écart à la linéarité est contenu dans ± 1.5 LSB, soit ± 60 fC

Introduction

Architecture

Carte de test et acquisition

Premiers résultats

Fonctionnalité

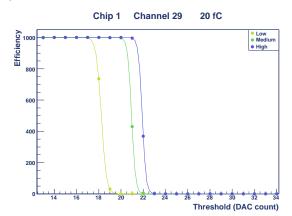
DACs

Chaîne complète RPO

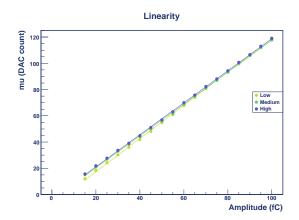

Chaîne complète Micromégas

Bruit de déclenchement

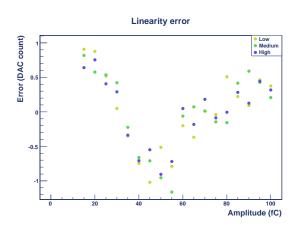
Alimentation



S-curve (zoom)


C_{det}=40 pC

Passage de 100% à 0% <2.4 fC Dispersion entre les 3 seuils : 2.5 LSB, soit 2 fC



L'écart à la linéarité est contenu dans ± 1 LSB, soit ± 0.8 fC

Introduction

Architecture

Carte de test et acquisition

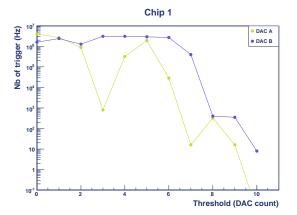
Premiers résultats

Fonctionnalité

DACs

Chaîne complète RPC

Chaîne complète Micromégas


Bruit de déclenchement

Alimentation

Bruit de déclenchement

Pas d'entrée. Taux de faux déclenchements en fonction du seuil.

Difficultés pour déclencher convenablement aux seuils en dessous de 10 (semble lié au setup : en cours!).

Plan

Introduction

Architecture

Carte de test et acquisition

Premiers résultats

Fonctionnalité

DACs

Chaîne complete RPC
Chaîne complète Micromég

Bruit de déclenchement

Alimentation

Consommation

Courants consommés en μA sous 3.3 V :

	PAC	Servo DC	Comp.	DAC cells	OTA DAC
Bias	220	6	11	11	13
Voie	220	61	3×11	_	_
DACs	_	-	_	$11+0.3 \times n$	23

Soit une puissance dissipée de :

- 13.5 μW/voie pour les polarisations;
- 1 mW par voie, modulo le power pulsing;
- 4 μW/voie pour un DAC au code 128.

Power pulsing

Temps de mise en route <800 ns.

En cours

Il reste à faire :

- Baisser le seuil au maximum avec un fonctionnement convenable (nécessite une nouvelle carte de test). Valeurs actuelles: 10 fC en mode micromégas et 200 fC en mode RPC:
- Mesurer les dispersions entre voies et entre circuits.
- Incidence du découplage sur le bruit (mesure du PSRR).

Plan

Introduction

Architecture

Carte de test et acquisition

Premiers résultats

Fonctionnalité

DACs

Chaîne complète RP

Chaîne complète Micromégas

Bruit de déclenchement

Alimentation

Premier chip 64 voies réalisé à Lyon!

- Topologie "entrées de chaque côté" ;
- Architecture synchrone;
- Power pulsing;
- Caractéristiques analogiques (linéarité et gain).

Prochaine version

- Ajouter une correction de pente et d'offset sur les DACs;
- Non linéarité (seuils à 0.1 1 10)???
- Possibilité de masquer une voie bruyante;
- Inclure le circuit d'injection;
- Horloge en LVDS;
- Correction d'un bug mineur sur la logique de déclenchement;
- Sortie analogique (différentielle?) multiplexée.

R. Gaglione 15 fév 2008 Evolutions 46 / 47

Merci de votre attention!