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Why Standard Model may not be enough

There are hints that Standard Model is only an
approximation.

Theoretical side

Could be part of a uni�ed theory (GUTs)

Does not explain the wide scale between all
fermion masses (�avour hierarchy)

Naturalness : Higgs mass suspiciously a�ected by
possible heavy particles

Ù SUSY

Experimental side

Dark Matter : it can be anything but the
Standard Model

Ù SUSY

Have we just found the Higgs, or some scalar?
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Beyond the Standard Model : Supersymmetry

Fields φ Ù Super�elds Φ

Each Standard Model particle has a superpartner

Extended Higgs sector : h/H/A0 and H+

new parameters tβ ,MA0

Naturalness : Supersymmetry protects the running
Higgs mass

Dark Matter : superpartners of γ,Z ,h, called
neutralinos (χ̃0

1) are good candidates.

They are neutral, massive (Supersymmetry breaking)
and one is stable if R-parity is assumed
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The goal of the thesis (I)

Constraining Supersymmetry through Dark
Matter observables.

Constraint on Relic Density

Ωh2 = 0.1126± 0.0036 (WMAP) Ù ∆exp = 3%

Precise constraint on Supersymmetry

Requires a one-loop computation

However, most scans in Supersymmetry are
tree-level.

Aim Ù gain in precision with simplicity
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The goal of the thesis (II)

Higgs sector of the MSSM is constrained

Tension between Naturalness, and a possible
heavy Higgs.

What if we had found a heavier Higgs
(mh > 150 GeV)?

What couplings can be allowed with
mh = 125 GeV?

Supersymmetry could well be non-minimal.

Account for a new sector coupled to Higgses

Allows for a non minimal Higgs sector

Ù BMSSM

Aim Ù Gain in �exibility in the Higgs sector
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E�ective approach

Equivalence Low-energy theory ⇔ Full theory

−→ High momenta
integrated out

1
k2−M2

−−−−−−→
Q2 � M2

c
High masses
integrated out

Possibility for a generic set-up with δL =
∑

i

ciOi

The Oi respect all symmetries of the low energy
theory

Analogy with LEP

e−

e+

µ−

µ+

E�ective terms sw (Q), MZ (Q), . . .
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The Dark Matter problem

What do we need Dark Matter for?

CMB Ù

How to compute the Relic Density

Ωh2 ⇔ σχ̃χ̃→SM
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Properties of χ̃0
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One-loop computations

One-loop diagrams

Self energy Field renormalisation

Vertices Boxes

Regularisation : A = A0 + 1
εA1 + · · ·

Dimensional Regularisation : Divergence is 1/ε in the
limit ε → 0

Renormalisation : g = g0 + 1
ε g1 + · · ·
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The renormalisation scheme

The OS scheme : δA = 0
e.g. for a mass, the sum of self-energies and

counterterms vanishes.

δM1 usually renormalised on mχ̃0
1

But if |Zn11| is small, it becomes ill-suited and
δM1 is large.

�Bino-like� scheme : δM1 is renormalised on the
most bino-like of the four neutralinos.

tβ can be renormalised in di�erent ways
mH

A0Z transition (DCPR scheme)

DR
A0 → τ̄ τ

Accuracy check : we will change the
renormalisation scheme to assess the precision of
the full one-loop result.
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Using an e�ective approach versus full one-loop
computation

Full one-loop computation nearly not used at all!

Complications (need for a renormalisation
scheme, no fully automated code)

Computing time issue :
τone-loop/τtree-level ∼ 102 − 104

Supersymmetric studies based on ∼ 100 processes

For each process, 1000 one-loop diagrams

E�ective approach : tree-level computation with
e�ective operators

χ̃0
1 f̃ f

χ̃0
1χ̃

0
1Z

Z f̄ f
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Determination of e�ective coe�cients

The χ̃0
1 f̃ f vertex χ̃0

1

f

f̃

Considering only fermions and sfermions, there
are no loops involved

Hence the one-loop coupling χ̃0
1 f̃ f is physical

(hence �nite)`
g2Yf , g1τ

3
f , y1f , y2f

´
Zn

↓`
(g2 + δg2Yf , (g1 + δg1)τ

3
f , y1f + δy1f , y2f + δy2f

´
Zn(1 + δZn)

Requires that all δX quantities are computed with
only fermions/sfermions running in the loop.

Hollik et al. (JHEP (2002))
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Determination of e�ective coe�cients : II

The χ̃0
1χ̃

0
1Z vertex

There is now a genuine
triangle loop with
(s)fermions

t

t̃

t̃

χ̃0
1

χ̃0
1

Z

The e�ective vertex reads then

ge�
χ̃0

1χ̃0
1Z = gχ̃0

1χ̃0
1Z + δgχ̃0

1χ̃0
1Z + gloop

χ̃0
1χ̃0

1Z
(2m2

χ̃0
1
)

Either with only fermions/sfermions in the loops.

Or with also other particles

In order to have a coherent one-loop picture

Ù e�ective Z f̄ f vertex
17/52
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Analysis

Parameters :
MA0 = 1 TeV tβ = 4
M˜̀ = 500 GeV Mq̃ = 800 GeV

Af = 0
Process

χ̃0
1χ̃

0
1 → µ+µ− at v = 0.2

We will compare di�erent cross sections
∆one-loop : full one-loop
∆eff : universal e�ective part
∆α(Q) : α(Q) running correction

∆X =
σX − σtree
σtree

18/52

F.Boudjema,GDLR,S.Kulkarni (PhysRevD 2011)
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Results : Bino Case

M1 = 90 GeV, M2 = 200 GeV, µ = −600 GeV

∆eff = 17.5% ∆α = 14.6% ∆one-loop = 19.6%
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Non-decoupling of heavy squarks.

Scheme dependence . 1% on δtβ
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Results : Higgsino Case

M1 = 500 GeV, M2 = 600 GeV, µ = −100 GeV

∆eff = 13.6% ∆α = 14.62% ∆one-loop = −7.5%

Squarks non-decoupling correctly accounted for
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Robustness of the e�ective approach

E�ective computation always faster than full
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Better than the naive running of α(Q) (in bino
case, 2% agreement)

Exhibits interesting feature : the squarks
non-decoupling contribution (in all cases)

Is not always precise
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Naturalness in the Standard Model

Quantum corrections Ù e�ective masses and
couplings change with energy

e.g. the screening of the electric charge

Measuring parameters at two di�erent scales
yields di�erent values

Running Higgs mass mh(Q) with a fermion of
mass mf

dm2
h(Q)

d ln Q
= −3y2

4π2 m2
f

Assuming complete Standard Model except for new
particles appearing at Planck scale ΛPlanck

Ù mh(ΛPlanck) � mh

Around 28 orders of magnitude of di�erence

Ù a �ne-tuning issue

Solutions
New symmetry to protect Higgs mass
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Naturalness in the MSSM

Exact Supersymmetry Ù exact cancellation of
fermionic and bosonic loops to mh

But Supersymmetry appears broken

Fine-tuning now between MZ and MSUSY

Mainly concerns third generation (stops,
sbottoms)

The little hierarchy issue

At tree-level mh < MZ

Maximal mh Ù Heavy stops

Having the lightest Higgs heavy (& 125 GeV)
brings back �ne-tuning.
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E�ective approach again : the bottom-up

A natural MSSM (i.e. with light stops) bound to
cope with a light h
Such a Higgs boson has very standard-like
properties.

These issues can be relaxed by not restricting to
minimal Supersymmetry.

Non-minimal extensions : NMSSM, U(1)'MSSM

E�ective approach :

K = KMSSM +
1
M

K (1) +
1

M2 K (2) + · · ·

W = KMSSM +
1
M

K (1) +
1

M2 W (2) + · · ·

New set of operators Oi and coe�cients ci
Oi respect all symmetries of the low-energy theory

If high-energy completion is weakly coupled,
ci ∼ 1.
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Conclusion

Reducing the number of operators

In order to account for a generic UV completion,
one must include ALL e�ective operators.

Restrictions : truncate at order 2 (1/M2), and
include only Higgs super�elds

Oi =
1

Mk Oi (H1,H2), k = 1 or 2

Fields rede�nition and equations of motion

We� = ζ1
1
M

(H1.H2)
2

Ke� = a1
1

M2

“
H†

1 eV1 H1

”2
+ a2

1
M2

“
H†

2 eV2 H2

”2

+a3
1

M2

“
H†

1 eV1 H1

” “
H†

2 eV2 H2

”
+ a4

1
M2

`
H1.H2

´ “
H†

1 .H†
2

”
+

1
M2

“
H1.H2 + H†

1 .H†
2

” “
a5H†

1 eV1 H1 + a6H†
2 eV2 H2

”
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Supersymmetry breaking of e�ective operators

Allows a Supersymmetry breaking part

Replace e�ective coe�cients ζ1,ai by spurions

ζ1 −→ ζ10 + ζ11msθ
2

ai −→ ai0 + ai1msθ
2 + a∗i1msθ

2
+ ai2m2

sθ
2
θ2

We want to keep the e�ective �eld theory
approximately supersymmetric

ms

M
= 0.2 < 1

We have chosen M = 1.5 TeV, ms = 300 GeV.

Important parameter space :
20 e�ective coe�cients
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Conclusion

Deriving operators for �elds

Integration over the Grassmann variables ⇒
automated with lanHEP

L = L
(

W ,K , ∂iW , ∂ijW , ∂i j̄K , · · ·
)

Not all �eld operators are non-renormalisable!

e.g.
(

H†
1eV

1 H1

)2
→ ce� v2

M2 ZµZ µ

Ù Correction to MZ

First observable consequence : the EWPT

δε1 = 4e2 M2
W (M2

W−M2
Z )

M2
Z M2

“
a10t−4

β − a30t−2
β + a20

”
= 1

2 δε2 = δε3

ε1, ε2, ε3 = S,T ,U reduce the e�ective parameter
space.
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β − a30t−2
β + a20

”
= 1

2 δε2 = δε3

ε1, ε2, ε3 = S,T ,U reduce the e�ective parameter
space.

28/52



E�ectives
approaches within
the MSSM and

Beyond :
Applications to

Higgs physics and
Dark Matter
observables

G.Drieu La Rochelle

Introduction
The Standard
Model and Beyond

Higgs and Dark
Matter

E�ective approach
for relic density
SUSY at one-loop

E�ective vertices

Results

E�ective approach
for Higgs physics
The BMSSM

Computing
observables

Masses and
Couplings

Recasting SM Higgs
searches

The Higgs signal

Conclusion

Deriving operators for �elds

Integration over the Grassmann variables ⇒
automated with lanHEP

L = L
(

W ,K , ∂iW , ∂ijW , ∂i j̄K , · · ·
)

Not all �eld operators are non-renormalisable!

e.g.
(

H†
1eV

1 H1

)2
→ ce� v2

M2 ZµZ µ

Ù Correction to MZ

First observable consequence : the EWPT

δε1 = 4e2 M2
W (M2

W−M2
Z )

M2
Z M2

“
a10t−4

β − a30t−2
β + a20

”
= 1

2 δε2 = δε3

ε1, ε2, ε3 = S,T ,U reduce the e�ective parameter
space.

28/52



E�ectives
approaches within
the MSSM and

Beyond :
Applications to

Higgs physics and
Dark Matter
observables

G.Drieu La Rochelle

Introduction
The Standard
Model and Beyond

Higgs and Dark
Matter

E�ective approach
for relic density
SUSY at one-loop

E�ective vertices

Results

E�ective approach
for Higgs physics
The BMSSM

Computing
observables

Masses and
Couplings

Recasting SM Higgs
searches

The Higgs signal

Conclusion

Deriving operators for �elds (II)

Many e�ects are simple shifts of tree-level
couplings

Suppression factors µ
M ,

v
M ,

ms
M ∼ 0.2

Naively, new Lorentz structures arise with
Higgs-only vertices

Three scalars : ∂µh∂µH+H− ⊂ L
Higgsino-Higgsino-Higgs : h∂/ χ̃+χ̃− ⊂ L

Applying equations of motion

Ù MSSM Lorentz structure

This is crucial on loop-induced processes :

h/H/A0 → γγ, Bs → µ+µ−, B → Xsγ
∗
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E�ective parameter space

We take ms
M = 0.2 Ù new physics approximatively

supersymmetric

M = 1.5 TeV, ms = 300 GeV

20 free e�ective parameters

ζ1i ,aij ∈ [−1,1]

Scanning issue

Comparison of �xed grid, MCMC . . .

Not all parameters contribute to a given
observable
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MSSM Parameter Space

M2 = 300 GeV, M1 = 5
3 tan2 θW M2 ' M2/2,

M3 = 800 GeV.

Mf̃ = 1 Tev, Af = 0, except for third generation

mh max case :
Mu3 = Mq3 = Md3 = 1 TeV, At = Ab = 2× 1 TeV + µ

tβ

A): Light degenerate stops Mu3 = Mq3 = Md3 = 400
GeV, At = Ab = 0

B): Light stops mass separated and maximal mixing
mt̃1

= 200 GeV, mt̃2
∈ [300, 800] (GeV) and

| sin 2θt̃ | = 1

Higgs sector

tβ ∈ [2,40], MA0 ∈ [50,450] GeV
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Increase of the lightest Higgs mass

MSSM : mh < 135 GeV

Ù BMSSM : mh < 250 GeV.

Figure: BMSSM reach in mH ,mh plane without
experimental constraints
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Tree-level Higgs couplings

Z ,W similar features as MSSM g2
hVV + g2

HVV ' 1
u, c, t similar features as MSSM

d , s,b, τ tβ e�ect + Slow-decoupling
∣∣∣ ghb̄b

gSM
hb̄b

∣∣∣ ∈ [0,10]
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Loop induced Higgs couplings

ghgg ruled by top (+ bottom + stops)

ghγγ ruled by W , top (+ bottom + stops)

use of equations of motion to get rid of additional
diagrams
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Relating couplings to observables

The couplings are not directly accessible

For instance gg → h → γγ is sensitive to
1 Coupling ghb̄b ⇒ Γh ⇒ BR(h → γγ)

2 Coupling ght̄t and ghb̄b (gg → h and h → γγ)

3 Coupling ghWW (in h → γγ)

4 Light stops (gg → h and h → γγ)

5 Light staus, charginos (h → γγ)

Correlations ⇒ NOT an unconstrained physics
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Technique : using tools for phenomenology

The �eld lagrangian is complicated, especially the
scalar part

F-terms from VF = −W̄īWi in MSSM to

VF = −
(

W
i
+ 1

2 Kiklψ
kψl
)

Ki j

(
W j + 1

2 Kjk lψ
k
ψ

l
)

An automated treatment is more suited

Ù lanHEP
Creation of a new version with higher-order
derivatives of K and W .

It is enough to specify K ,W and the truncation
order in 1

M to obtain all Feynman rules

Tools for observables

CalcHEP for processes without loop corrections

Modi�ed version of HDecay for the remaining
part

h → γγ, h → gg, h → b̄b . . .
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Experimental constraints

What experimental constraints will be used

Electroweak Precision Test (EWPT)

Flavour Physics : Bs → µ+µ− and B → Xsγ
∗

Muon anomalous magnetic moment gµ − 2

Dark Matter constraints (Relic density and direct
detection)

Higgs exclusion limits on h/H/A0 and H+ :
LEP/Tevatron/LHC

The direct searches for superpartners have been
avoided by using heavy quarks (∼ 1 TeV), except
stops

For neutral Higgses, we combine all available
channels and test each Higgs separately.
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The Standard Model Higgs search : production
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 H (NNLO+NNLL QCD + NLO EW)
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 qqH (NNLO QCD + NLO EW)

→pp 

 WH (NNLO QCD + NLO EW)

→
pp 

 ZH (NNLO QCD +NLO EW)

→
pp 

 ttH (NLO QCD)

→pp 

Dominated by gluon fusion

But VBF or VH can be distinguished
ghVV is less �exible than ghgg

The ratio of production modes can probe the SM

σgg→h→XX

σVBF→h→XX

Hints of non-standard behaviour

38/52

gg → h
VBF

VH



E�ectives
approaches within
the MSSM and

Beyond :
Applications to

Higgs physics and
Dark Matter
observables

G.Drieu La Rochelle

Introduction
The Standard
Model and Beyond

Higgs and Dark
Matter

E�ective approach
for relic density
SUSY at one-loop

E�ective vertices

Results

E�ective approach
for Higgs physics
The BMSSM

Computing
observables

Masses and
Couplings

Recasting SM Higgs
searches

The Higgs signal

Conclusion

The Standard Model Higgs search : production

 [GeV] HM
100 200 300 400 500 1000

 H
+

X
) 

[p
b]

   
 

→
(p

p 
σ

-210

-110

1

10
= 7 TeVs

L
H

C
 H

IG
G

S
 X

S
 W

G
 2

01
0

 H (NNLO+NNLL QCD + NLO EW)

→pp 

 qqH (NNLO QCD + NLO EW)

→pp 

 WH (NNLO QCD + NLO EW)

→
pp 

 ZH (NNLO QCD +NLO EW)

→
pp 

 ttH (NLO QCD)

→pp 

Dominated by gluon fusion

But VBF or VH can be distinguished
ghVV is less �exible than ghgg

The ratio of production modes can probe the SM

σgg→h→XX

σVBF→h→XX

Hints of non-standard behaviour

38/52

gg → h
VBF

VH



E�ectives
approaches within
the MSSM and

Beyond :
Applications to

Higgs physics and
Dark Matter
observables

G.Drieu La Rochelle

Introduction
The Standard
Model and Beyond

Higgs and Dark
Matter

E�ective approach
for relic density
SUSY at one-loop

E�ective vertices

Results

E�ective approach
for Higgs physics
The BMSSM

Computing
observables

Masses and
Couplings

Recasting SM Higgs
searches

The Higgs signal

Conclusion

The Standard Model Higgs search : production

 [GeV] HM
100 200 300 400 500 1000

 H
+

X
) 

[p
b]

   
 

→
(p

p 
σ

-210

-110

1

10
= 7 TeVs

L
H

C
 H

IG
G

S
 X

S
 W

G
 2

01
0

 H (NNLO+NNLL QCD + NLO EW)

→pp 

 qqH (NNLO QCD + NLO EW)

→pp 

 WH (NNLO QCD + NLO EW)

→
pp 

 ZH (NNLO QCD +NLO EW)

→
pp 

 ttH (NLO QCD)

→pp 

Dominated by gluon fusion

But VBF or VH can be distinguished
ghVV is less �exible than ghgg

The ratio of production modes can probe the SM

σgg→h→XX

σVBF→h→XX

Hints of non-standard behaviour

38/52

gg → h
VBF

VH



E�ectives
approaches within
the MSSM and

Beyond :
Applications to

Higgs physics and
Dark Matter
observables

G.Drieu La Rochelle

Introduction
The Standard
Model and Beyond

Higgs and Dark
Matter

E�ective approach
for relic density
SUSY at one-loop

E�ective vertices

Results

E�ective approach
for Higgs physics
The BMSSM

Computing
observables

Masses and
Couplings

Recasting SM Higgs
searches

The Higgs signal

Conclusion

The Standard Model Higgs search : channels
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γγ : low masses

can probe VBF with γγ + 2j

ZZ : di�erent subchannels (4`,2`2ν · · · )
Good sensitivity even below the threshold

WW : similar features

can probe VH, VBF with WW + 1/2j

τ̄ τ : whole mass range

MSSM-like analysis since this channel is tβ
enhanced

VH → Vb̄b : low masses

Independent of gg → H!
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Recasting to non-SM models

Use the exclusion ratio in the no signal case

Rexcl 95%
XX =

σpp→φ→XX

σexcl 95%pp→φ→XX

Use signal strength in the case of a signal

RXX =
σpp→φ→XX

σSMpp→H→XX

Use the MSSM production modes

σpp→φ→XX =
(
σggh + σVBF + σVh + σb̄bh

)
×BR(φ→ XX )

40/52

F.Boudjema,GDLR (PhysRevD 2011)
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Recasting Issue 1 : the e�ciencies

On a single count experiment we have a priori

µ =
nS

nSMS
6= σinclusive

σSMinclusive

Analyses impose cuts on the �nal phase space
If the di�erential distributions (pT , η, mXX , · · · ) are
not proportional to SM, the events yields will vary

Typically those distributions depend on the
production mode gg, VBF , · · ·

µ is then obtained by the exclusive cross-section :

µ = σexclusive

σSM exclusive , σexclusive =
∑

i

εiσi × BR

σi : inclusive production cross-sections

εi : e�ciencies

Concerned channels

h → γγ + 0/2j h → WW + 0/1/2j h → τ̄ τ
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Recasting Issue 1 : Example

Limit on Rexcl 95%
Fermiophobic versus Rexcl 95%

SM

E�ciencies rarely quoted
for mh = 120 GeV, and �nal state γγ + 2j
εggh = 0.005, εvbf = 0.15

Not quoted on the public note nor the paper!

Ratios can be estimated on a Monte-Carlo basis
WW + 0/1j, mh < 160 GeV, ∼ 10− 20% accuracy

Though they show a limited impact on searches, they

become relevant in the case of a signal
42/52
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Issue 2 : Combining (sub)channels

Statistical combinations of n channels assume
identical RX1X1 = RX2X2 = · · · = RXnXn = µ

i.e. the signal is assumed to be exactly SM-like

It induces a bias on µ̂ and Rexcl 95%

Naive combination

Rexcl 95% =

(∑
i

Rexcl 95%
i

−2

)− 1
2

Reconstruct each likelihood Li from Rexcl 95%
expected , µ̂

in the limit s � b Azatov et al (arXiv:1202.3415)

Improvements on the experimental side

Statistical combination with di�erent Ri

ATLAS analysis for h → γγ : L = L(Rggh,RVVh)
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Allowed region for neutral Higgses

Lightest Higgs h restricted to be light mh < 150 GeV

Cases with mh < 114 GeV

h is then decoupled to Z ,W bosons.

H can either be light mH < 150 GeV, or decay as
H → hh

In particular there are two possibilities mh = 125 GeV
and mH = 125 GeV.

44/52

Summer 2011, 2 fb−1

F.Boudjema,GDLR (PhysRevD 2011)
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Signal features from ATLAS/CMS

mh = 125− 127 GeV

We take µ̂ from the most indicative channels

The uncertainties quoted are for 1σ bands.

ATLAS CMS
2012 2011 2012 2011

γγ 1.9± 0.5 2± 0.8 1.4± 0.5 1.7± 0.8
γγ + 2j 2.8± 1.2 1.6± 1.1 3.8± 2.1
ZZ → 4` 1.35± 0.9 1.2± 1.0 0.8 0.5± 0.8

Other channels are dominated by uncertainties

ATLAS CMS

WW → lνlν 0.5± 0.4
τ̄ τ −0.3

VH → Vb̄b 0.6

X : Reconstructed values

45/52

December 2011, 5 fb−1

July 2012, 10 fb−1
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Higgs signal in h → γγ

h → γγ can be enhanced :

E�ect mostly driven by a reduction of ghb̄b,
raising thus BRh→γγ

46/52

December 2011, 5 fb−1

F.Boudjema,GDLR (accepted in PhysRevD)
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Higgs signal in h → γγ (II)

The reduction of ghb̄b implies strong correlations
between enhanced channels

Correlation with VH → Vb̄b channel.

47/52

December 2011, 5 fb−1



E�ectives
approaches within
the MSSM and

Beyond :
Applications to

Higgs physics and
Dark Matter
observables

G.Drieu La Rochelle

Introduction
The Standard
Model and Beyond

Higgs and Dark
Matter

E�ective approach
for relic density
SUSY at one-loop

E�ective vertices

Results

E�ective approach
for Higgs physics
The BMSSM

Computing
observables

Masses and
Couplings

Recasting SM Higgs
searches

The Higgs signal

Conclusion

Higgs signal in h → γγ (II)

The reduction of ghb̄b implies strong correlations
between enhanced channels

Correlation with VH → Vb̄b channel.

47/52

December 2011, 5 fb−1



E�ectives
approaches within
the MSSM and

Beyond :
Applications to

Higgs physics and
Dark Matter
observables

G.Drieu La Rochelle

Introduction
The Standard
Model and Beyond

Higgs and Dark
Matter

E�ective approach
for relic density
SUSY at one-loop

E�ective vertices

Results

E�ective approach
for Higgs physics
The BMSSM

Computing
observables

Masses and
Couplings

Recasting SM Higgs
searches

The Higgs signal

Conclusion

E�ect of stops loops

Lightest stop loop

ght̃1 t̃1 '
g

MW

(
sin2(2θt̃)

m2
t̃1
−m2

t̃2
4 + m2

t + O(M2
Z )

)
Opposite contributions to gg → h and h → γγ.

Model B) : ∆m = 400 GeV, s2θt = 1

Rγγ is reduced as compared as scenario A) but now
there is a hierarchy

Rγγ+2j > Rγγ > RZZ
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Flavour Constraints

Supersymmetry typically allows for extra contributions
Bs → µ+µ− and B → Xsγ

∗

New contributions from the BMSSM (hH+H−,
A0χ̃+

i χ̃
−
j )

First consequence : MA0 < 200 GeV excluded for all
tβ ∈ [2,40]

Speci�c for Model B)
Because of the stop-chargino loop, tβ is restricted
to be small (< 5)
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Expectations for other Higgses

Selecting mh ∈ [123, 129] GeV, with Rγγ = X , RZZ = X

τ̄ τ channel more promising
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Conclusion

Power of the e�ective approach

A precious tool for separating an observable scale, i.e.
at low energy from a hypothesized scale

For Dark Matter the e�ective scale is the neutralino
mass and the heavy one the squark masses.

For the Higgs search the e�ective scale is mh and the
heavy scale the extra physics.

Conclusions from Higgs and Dark Matter constraints

Relic Density precise enough Ù towards an era of
precision?

The supersymmetric Higgs can be quite non-standard
(Correlations between channels)

With the data coming in, importance of a
model-independent result
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