

Three-nucleon forces at neutron-rich extremes

Johannes Simonis

Institut für Kernphysik, TU Darmstadt

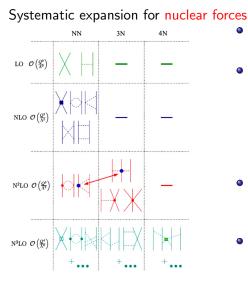
with Jason D. Holt, Javier Menéndez, Achim Schwenk (EMMI/TU Darmstadt)

Shell Model as a Unified View of Nuclear Structure Strasbourg, October 8th, 2012

Motivation

Why perform calculation of medium-mass nuclei with nuclear forces from Chiral Effective Field Theory?

- No phenomenological fits
- Understand phenomenological adjustments necessary for realistic interactions, e.g. *G*-matrix
- Hope for more controlled extrapolations for neutron-rich extremes


Microscopic calculation of medium-mass nuclei

Microscopic calculation of medium-mass nuclei including 3N forces

- Use Chiral Effective Field Theory (chiral EFT) interactions, includes naturally NN and 3N forces
- Perform a renormalization group evolution to $V_{low k}$ interaction to enhance convergence of the MBPT calculation
- Apply Many-Body Perturbation Theory (MBPT) to obtain interactions to be used in Shell Model (SM) calculations
- \Rightarrow 3N forces are naturally included Shown necessary to reproduce properties of light nuclei
- ⇒ All the parameters that appear in the SM hamiltonian calculated from the input of the microscopic interaction (no fits!) Test nuclear forces for stable and exotic nuclei

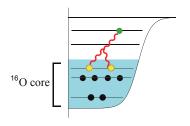
NN+3N forces in Chiral EFT

- NN force couplings fitted to NN, π N data
- 3N force couplings:
 c_i's consistent with NN;
 c_D, c_E fitted to few-body data:
 3U + C + C

³H binding energy, ⁴He charge radius

- Chiral EFT potentials for NN at N³LO and 3N at N²LO
- But: $N^3LO~3N \sim 1/3$ of $N^2LO~3N$

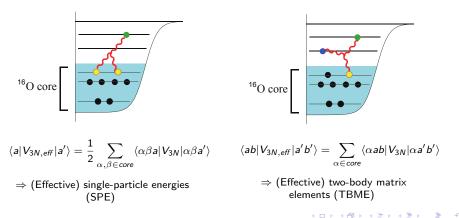
Tews et al., arXiv:1206.0025.


Shell Model interactions

- \bullet Results with NN+3N forces included to 3rd order in MBPT
- In addition to standard sd and pf shell
 - O isotopes: $sdf_{7/2}p_{3/2}$ valence space
 - Ca isotopes: $pfg_{9/2}$ valence space
- Full diagonalizations using ANTOINE Caurier et al., *RMP* **77** 427 (2005).
- MBPT with enlarged valence space to include as many non-perturbative orbits as possible
- Valence space beyond one major shell: center-of-mass contamination?
 - Singular value decomposition Hagen et al., PRC 82 034330 (2010).,
 - Lee-Suzuki trafo to major shell,
 - In-medium SRG Tsukiyama et al., PRC 85 061304 (2012).

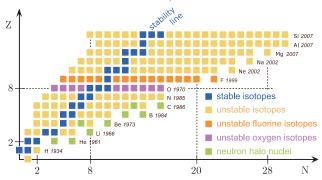
3N forces for valence-shell theories

• Contribution to valence neutron interactions Effective one body

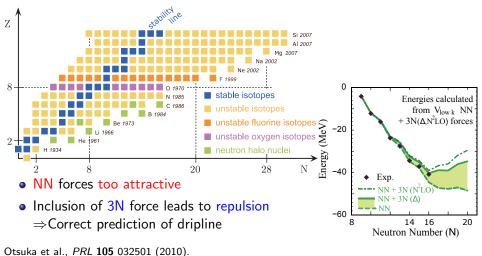

$$\langle a|V_{3N,eff}|a'
angle = rac{1}{2}\sum_{lpha,eta\in core} \langle lphaeta a|V_{3N}|lphaeta a'
angle$$

 $\Rightarrow ({\sf Effective}) \ {\sf single-particle} \ {\sf energies} \\ ({\sf SPE})$

3N forces for valence-shell theories

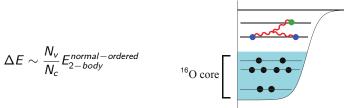

• Contribution to valence neutron interactions Effective one body Effective two body

The oxygen anomaly


Where is the neutron dripline?

The oxygen anomaly

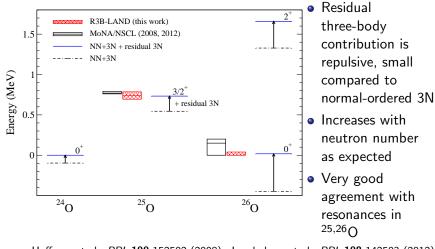
Where is the neutron dripline?



3N forces for valence-shell theories

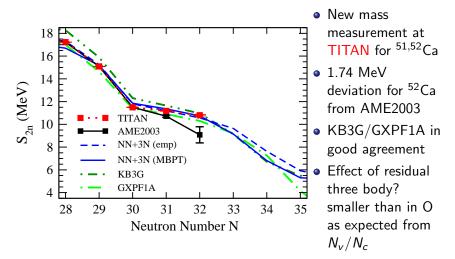
When going to neutron-rich extremes must include

- Residual three body Friman, Schwenk, arXiv:1101.4858.
 - Estimated to be suppressed N_{ν}/N_{c}



- Becomes important for most neutron-rich isotopes
- Included perturbatively using wave function from ANTOINE

$$\Delta E = \langle \Psi | V_{3N} | \Psi \rangle$$


Theory vs. experiment - arXiv:1209.0156.

Hoffman et al., PRL 100 152502 (2008).; Lunderberg et al., PRL 108 142503 (2012).

Two-neutron separation energies of Ca isotopes

Gallant et al., PRL 109 032506 (2012).

Summary and Outlook

Microscopic calculation based on chiral EFT (NN+3N forces) with inclusion of residual three-body contribution for the first time

Contribution of residual three body small, but increases with neutron number in the shell model up to $0.4\,{\rm MeV}$ in $^{26}{\rm O}$

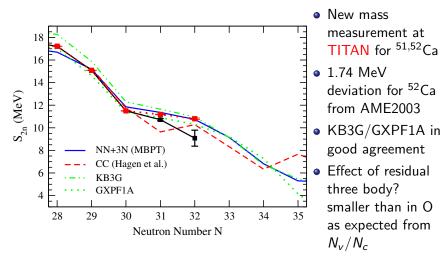
Very good agreement with experiment for neutron-rich oxygen isotopes

Outlook:

Explore effect of residual three body in Ca and other chains

Error estimate by cutoff- and c_i -variation

Inclusion of N³LO 3N forces


-

э

Thank you for your attention!

Two-neutron separation energies of Ca isotopes

Gallant et al., PRL 109 032506 (2012).