Application of Isospin Non-Conserving Hamiltonian to Isospin-Mixing Correction in Superallowed β Decay

Yi Hua LAM^{†‡}

Nadya SMIRNOVA[†]

Etienne CAURIER*

[†]CEN Bordeaux-Gradignan (CNRS/IN2P3 – Université Bordeaux 1), France

[‡] Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 2, 64289 Darmstadt, Germany.

* IPHC, IN2P3-CNRS/Université Louis Pasteur, BP 28, F-67037 Strasbourg Cedex, France

TECHNISCHE UNIVERSITÄT DARMSTADT

Shell Model as a Unified View of Nuclear Structure

Institut Pluridisciplinaire Hubert Curien (IPHC), IN2P3-CNRS/Université Louis Pasteur, BP 28, F-67037 Strasbourg Cedex, France. 8-10 October 2012.

Outline

Test of CKM Matrix CKM matrix Superallowed Transition

2 Isospin-Mixing Correction δ_{IM} δ_{IM} for Superallowed Transitions δ_{IM} for Non-Analogue States

Outline

Superallowed Transition

2 Isospin-Mixing Correction δ_{IM} δ_{IM} for Superallowed Transitions δ_{IM} for Non-Analogue States

Summary and Perspective

Cabibbo-Kobayashi-Maskawa (CKM) matrix

• Elementary Particles of Standard Model,

TECHNISCHE

DARMSTADT

Cabibbo-Kobayashi-Maskawa (CKM) matrix

• Elementary Particles of Standard Model,

• up-type quarks, $u^{j} = \sum_{i=1}^{n} (U^{u}) u^{i}$

TECHNISCHE

DARMSTADT

Cabibbo-Kobayashi-Maskawa (CKM) matrix

TECHNISCHE UNIVERSITÄT DARMSTADT

Fermilab 95-759

- Elementary Particles of Standard Model,
 - up-type quarks,

$$u_h^j = \sum_k \left(U_h^u \right)_{jk} u_h^{\prime k}$$

• down-type quarks,

$$d_h^j = \sum_k \left(U_h^d \right)_{jk} d_h^{\prime h}$$

Cabibbo-Kobayashi-Maskawa (CKM) matrix

• Elementary Particles of Standard Model,

- up-type quarks,
- $\begin{aligned} u_h^j &= \sum_k \left(U_h^u \right)_{jk} u_h'^k , \\ \bullet & \text{down-type quarks,} \\ d_h^j &= \sum_k \left(U_h^d \right)_{ik} d_h'^k \end{aligned}$
- Lagrangian for a charge-current weak interaction,

$$\mathscr{L}_{W} = -\frac{g}{\sqrt{2}} \sum_{j} \left(\overline{u}_{L}^{\prime j} \gamma_{\mu} d_{L}^{\prime j} + \overline{\nu}_{L}^{j} \gamma_{\mu} l_{L}^{j} \right) W_{+}^{\mu} + h.c.$$

TECHNISCHE UNIVERSITÄT DARMSTADT

Cabibbo-Kobayashi-Maskawa (CKM) matrix

Elementary Particles of Standard Model,

- *up*-type quarks, $u_h^j = \sum_k (U_h^u)_{jk} u_h^{\prime k}$,
- down-type quarks, $d_{h}^{j} = \sum_{k} \left(U_{h}^{d} \right)_{jk} d_{h}^{\prime k}$
- Lagrangian for a charge-current weak interaction,

$$\mathscr{L}_{W} = -\frac{g}{\sqrt{2}} \sum_{j} \left(\overline{u}_{L}^{\prime j} \gamma_{\mu} d_{L}^{\prime j} + \overline{\nu}_{L}^{j} \gamma_{\mu} l_{L}^{j} \right) W_{+}^{\mu} + h.c.$$

C Fermilan 95-759

• Lagrangian rewritten in terms of mass eigenstates,

$$\mathscr{L}_W = -rac{g}{\sqrt{2}} \sum_{jkm} (\overline{u}_L^k \gamma_\mu \underbrace{(U_L^u)_{kj} (U_L^d)_{jm}^\dagger}_{V_{km} = \sum_j (U_L^u)_{kj} (U_L^d)_{jm}^\dagger} d_L^m + \overline{\nu}_L^j \gamma_\mu l_L^j) W_+^\mu + h.c.$$

Cabibbo-Kobayashi-Maskawa (CKM) matrix

• For n = 2 flavors,

$$\mathscr{L}_{W} = -rac{g}{\sqrt{2}} (\overline{u}_{L}\overline{c}_{L}) \gamma_{\mu} \underbrace{\left(egin{array}{c} \cos heta_{c} & \sin heta_{c} \ -\sin heta_{c} & \cos heta_{c} \end{array}
ight)}_{-\sin heta_{c} & \cos heta_{c} \end{array}} \left(egin{array}{c} d_{L} \ s_{L} \end{array}
ight) W_{+}^{\mu} + h.c.$$

Cabibbo-mixing angle, θ_c

Cabibbo-Kobayashi-Maskawa (CKM) matrix

• For n = 2 flavors,

$$\mathscr{L}_{W} = -\frac{g}{\sqrt{2}} (\overline{u}_{L} \overline{c}_{L}) \gamma_{\mu} \underbrace{\begin{pmatrix} \cos\theta_{c} & \sin\theta_{c} \\ -\sin\theta_{c} & \cos\theta_{c} \end{pmatrix}}_{-\sin\theta_{c} & \cos\theta_{c} \end{pmatrix}} \begin{pmatrix} d_{L} \\ s_{L} \end{pmatrix} W_{+}^{\mu} + h.c.$$

Cabibbo-mixing angle, θ_c

• For n = 3 flavors,

$$\mathscr{L}_{W} = -\frac{g}{\sqrt{2}} (\overline{u}_{L} \overline{c}_{L} \overline{t}_{L}) \gamma_{\mu} \underbrace{\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}}_{V_{tb}} \begin{pmatrix} d_{L} \\ s_{L} \\ b_{L} \end{pmatrix} W_{+}^{\mu} + h.c.$$

Cabibbo-Kobayashi-Maskawa (CKM) matrix

• For n = 2 flavors,

$$\mathscr{L}_{W} = -\frac{g}{\sqrt{2}} (\overline{u}_{L}\overline{c}_{L}) \gamma_{\mu} \underbrace{\begin{pmatrix} \cos\theta_{c} & \sin\theta_{c} \\ -\sin\theta_{c} & \cos\theta_{c} \end{pmatrix}}_{-\sin\theta_{c} & \cos\theta_{c} \end{pmatrix}} \begin{pmatrix} d_{L} \\ s_{L} \end{pmatrix} W_{+}^{\mu} + h.c.$$

Cabibbo-mixing angle, θ_c

• For n = 3 flavors,

Ο.

$$\mathscr{L}_{W} = -\frac{g}{\sqrt{2}} (\overline{u}_{L} \overline{c}_{L} \overline{t}_{L}) \gamma_{\mu} \underbrace{\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}}_{V_{tb}} \begin{pmatrix} d_{L} \\ s_{L} \\ b_{L} \end{pmatrix} W_{+}^{\mu} + h.c.$$

Cabibbo-Kobayashi-Maskawa (CKM) matrix

Cabibbo-Kobayashi-Maskawa (CKM) matrix

$$\mathbf{V} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

¹L. Wolfenstein, Phys. Rev. Lett. 51 (1983) 1945.

Cabibbo-Kobayashi-Maskawa (CKM) matrix

$$\mathbf{V} = \left(\begin{array}{ccc} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array}\right)$$

Wolfenstein's CKM matrix¹

$$\mathbf{V} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} - \frac{\lambda^4}{8} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda + \frac{A^2\lambda^5}{2} \left[1 - 2(\rho + i\eta)\right] & 1 - \frac{\lambda^2}{2} - \frac{\lambda^4}{8}(1 + 4A^2) & A\lambda^2 \\ A\lambda^3 \left\{1 - \left[1 - \frac{\lambda^2}{2}\right](\rho + i\eta)\right\} & -A\lambda^2 + \frac{A\lambda^4}{2} \left[1 - 2(\rho + i\eta)\right] & 1 - \frac{A\lambda^4}{2} \end{pmatrix}$$

¹L. Wolfenstein, Phys. Rev. Lett. 51 (1983) 1945.

• Why it's so important ?

- Why it's so important ?
 - the underlying symmetry of Standard Model

- Why it's so important ?
 - the underlying symmetry of Standard Model
 prediction of a new flavor → n?

- Why it's so important ?
 - the underlying symmetry of Standard Model
 - prediction of a new flavor $\rightarrow n$?
- Test on the fundamental symmetry of Standard Model:

- Why it's so important ?
 - the underlying symmetry of Standard Model
 - prediction of a new flavor $\rightarrow n$?
- Test on the fundamental symmetry of Standard Model:
 - Orthogonality test on rows & columns, *CP* violations $\sum_{k} V_{ik} V_{kj}^{\dagger} = \sum_{k} V_{ik}^{\dagger} V_{kj} = 0. \text{ for any } i, j \text{ with } i \neq j$

- Why it's so important ?
 - the underlying symmetry of Standard Model
 - prediction of a new flavor $\rightarrow n$?
- Test on the fundamental symmetry of Standard Model:
 - Orthogonality test on rows & columns, *CP* violations $\sum_{k} V_{ik} V_{kj}^{\dagger} = \sum_{k} V_{ik}^{\dagger} V_{kj} = 0. \text{ for any } i, j \text{ with } i \neq j$
 - Normalization test on rows and columns, Unitarity Test,

$$\sum_{k} V_{ik} V_{ki}^{\dagger} = \sum_{k} |V_{ik}|^{2} = \sum_{k} V_{ki}^{\dagger} V_{ik} = \sum_{i} |V_{ik}|^{2} = 1.$$

- Why it's so important ?
 - the underlying symmetry of Standard Model
 - prediction of a new flavor $\rightarrow n$?
- Test on the fundamental symmetry of Standard Model:
 - Orthogonality test on rows & columns, *CP* violations $\sum_{k} V_{ik} V_{kj}^{\dagger} = \sum_{k} V_{ik}^{\dagger} V_{kj} = 0. \text{ for any } i, j \text{ with } i \neq j$
 - Normalization test on rows and columns, Unitarity Test,

$$\sum_{k} V_{ik} V_{ki}^{\dagger} = \sum_{k} |V_{ik}|^{2} = \sum_{k} V_{ki}^{\dagger} V_{ik} = \sum_{i} |V_{ik}|^{2} = 1.$$

• The best precision is achieved in the top row: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$ Test of CKM Matrix - Superallowed Transition

Outline

2 Isospin-Mixing Correction δ_{IM} δ_{IM} for Superallowed Transitions δ_{IM} for Non-Analogue States

Summary and Perspective

Test of CKM Matrix – Superallowed Transition

Superallowed $0^+ \rightarrow 0^+$ Transition

 $\beta \text{-Decay Rate, } \Gamma$ $\Gamma = \frac{1}{\tau} = \frac{\ln 2}{t} = \frac{G_F^2 g_V^2 m_e^5}{2\pi^3} V_{ud}^2 \left(f_V |M_F^0|^2 + f_A \lambda^2 |M_{GT}^0|^2 \right)$

- τ = mean life time,
- G_F = fundamental weak interaction coupling constant
- g_V = vector coupling constant, (g_V = 1 if the CVC holds),
- m_e = electron mass
- V_{ud} = upper-left CKM matrix elements
- f_V = phase-space integral for Fermi transitions
- f_A = phase-space integral for Gamow-Teller transitions
- M_F and M_{GT} are the Fermi and Gamow-Teller matrix elements, respectively.
- The superallowed $0^+ \rightarrow 0^+ \; \beta\text{-decay}$

$$\rightarrow$$
 purely vector, $\left(\left| M_{GT}^{0} \right|^{2} = 0 \right)$

9/20

$$\mathscr{F}t = f_{exp}t(1+\left|\delta_{R}'\right|)(1+\left|\delta_{NS}\right|-\left|\delta_{IM}\right|-\left|\delta_{RO}\right|) = \frac{K}{|M_{F0}|^{2}G_{F}^{2}g_{v}^{2}V_{ud}^{2}(1+\left|\Delta_{R}'\right|)}$$

• Transition dependent part of radiative correction:

$$\mathscr{F}t = f_{exp}t(1+\delta_R')(1+\delta_{NS}-\delta_{IM}-\delta_{RO}) = \frac{K}{|M_{F0}|^2 G_F^2 g_V^2 V_{ud}^2(1+\Delta_R')}$$

• Transition dependent part of radiative correction:

$$\mathscr{F}t = f_{exp}t(1+\delta_{R}')(1+\delta_{NS}-\delta_{IM}-\delta_{RO}) = \frac{K}{|M_{F0}|^{2}G_{F}^{2}g_{V}^{2}V_{ud}^{2}(1+\Delta_{R}')}$$

$$\mathscr{F}t = f_{exp}t(1+\delta_{R}')(1+\delta_{NS}-\delta_{IM}-\delta_{RO}) = \frac{K}{|M_{F0}|^{2}G_{E}^{2}g_{V}^{2}V_{ud}^{2}(1+\Delta_{R}')}$$

Isospin symmetry breaking correction:

$$\mathscr{F}t = f_{exp}t(1 + \delta_R')(1 + \delta_{NS} - \delta_{IM} - \delta_{RO}) = \frac{K}{|M_{F0}|^2 G_F^2 g_v^2 V_{ud}^2 (1 + \Delta_R^v)}$$

• Isospin symmetry breaking correction:
• Isospin mixing correction.

•
$$\delta_{NS}$$
,
• δ_{R}' ,
• δ_{R}' ,
• $f_{exp}t(1 + \delta_{R}')(1 + \delta_{NS} - \delta_{IM} - \delta_{RO}) = \frac{K}{|M_{F0}|^2 G_F^2 g_v^2 V_{ud}^2 (1 + \Delta_R^v)}$
• Isospin symmetry breaking correction:
• Isospin mixing correction, δ_{IM} ,
• Radial overlap, δ_{RO} ,
• Transition dependent part of radiative correction, Δ_R^V ,

Outline

Test of CKM Matrix CKM matrix Superallowed Transition

2 Isospin-Mixing Correction δ_{IM} δ_{IM} for Superallowed Transitions

 $\delta_{I\!M}$ for Non-Analogue States

3 Summary and Perspective

Isospin-Mixing Correction $\delta_{IM} - \delta_{IM}$ for Superallowed Transitions

$\delta_{\text{Isospin Mixing}}(\delta_{\text{IM}})$ Correction

Isospin Non-Conserving Nuclear Hamiltonian: Isovector : Coulomb + Nucl. Hamil. (USD) + Isovector Single Particle Energies Isotensor : Coulomb + Nucl. Hamil. (USD) Isovector : Coulomb + Nucl. Hamil. (KB3G) + Isovector Single Particle Energies Isotensor : Coulomb + Nucl. Hamil. (KB3G)

	δ_{IM} (%)								
			Previous Works						
Parent	UCOM	Jastrow type SRC function			without SRC	Ormand &	Towner &		
Nucleus		Argonne V18 ²	CD-Bonn ²	Miller-Spencer		Brown	Hardy ⁵		
²² Mg	0.022	0.021	0.021	0.023	0.021	0.017 ⁴	0.010 (10)		
²⁶ AI ^m	0.012	0.012	0.011	0.013	0.011	0.01 ³	0.025 (10)		
²⁶ Si	0.046	0.046	0.046	0.046	0.046	0.028 ⁴	0.022 (10)		
³⁰ S	0.028	0.027	0.025	0.030	0.026	0.056 ⁴	0.137 (20)		
³⁴ Cl	0.037	0.036	0.036	0.036	0.037	0.06 ³	0.091 (10)		
³⁴ Ar	0.006	0.006	0.006	0.007	0.005	0.008 ⁴	0.023 (10)		
⁴⁶ V	0.036	0.035	0.035	0.032	0.032	0.09 ³	0.040 (30)		
⁵⁰ Mn	0.033	0.032	0.031	0.030	0.030	0.02 ³	0.057 (20)		

¹Lam, Smirnova, Caurier, 2012 submitted to PRC.

²Proposed parameters for Jastrow-type function on the basis of coupled-cluster calculation with Argonne V18 or CD-Bonn.

³Ormand W. E. & Brown B. A., Phys. Rev. Lett. 62 (1989) p.866.; Phys. Rev. C 52 (1995) p.2455.

⁴Calculated with strength parameters from Ormand & Brown NPA 491 '89 p.1

 5 Towner I. S. & Hardy J. C., Phys. Rev. C 77 (2008) 025501, Table III. unscaled δ_{C1}

$\mathscr{F}t$ values of superallowed $0^+ \rightarrow 0^+$ transition

							Ft values		
Parent	Exp. ft ³		Corrections (%)			Present	Towner &		
Nucleus		δ_{IM}^{1}	δ_{RO}^2	$\delta_R^{\prime 2}$	δ_{NS}^2	work ¹	Hardy ³		
²² Mg	3052 (7)	0.0216 (9)	0.370 (20)	1.466 (17)	-0.225 (20)	3077.6 (72)	3078.0 (74)		
²⁶ AI ^m	3036.9 (9)	0.0120 (8)	0.280 (15)	1.478 (20)	0.005 (20)	3072.9 (13)	3072.4 (14)		
³⁴ Cl	3049.4 (12)	0.0363 (5)	0.550 (45)	1.443 (32)	-0.085 (15)	3072.6 (21)	3070.6 (21)		
³⁴ Ar	3053 (8)	0.0060 (4)	0.635 (55)	1.412 (35)	-0.180 (15)	3070.7 (84)	3069.6 (85)		
⁴⁶ V	3049.5 (9)	0.0034 (6)	0.075 (30)	1.445 (62)	-0.035 (10)	3070.1 (74)	3073.3 (27)		
⁵⁰ Mn	3048.4 (12)	0.0032 (5)	0.045 (20)	1.445 (54)	-0.040 (10)	3071.8 (52)	3070.9 (28)		

TECHNISCHE

DARMSTAD

¹Lam, Smirnova, Caurier, 2012 submitted to PRC.

²Towner I. S. & Hardy J. C., Phys. Rev. C 77 (2008) 025501, Table II, V, VI.

³Towner I. S. & Hardy J. C., Rep. Prog. Phys. 73 (2010) 046301, Table 4.

¹Lam, Smirnova, Caurier (2012)

V_{ud}

$$|V_{ud}|^{2} = \frac{K}{2G_{F}^{2}(1+\Delta_{R}^{V})\overline{\mathscr{F}t}} = \frac{2915.64 \pm 1.08^{1}}{\overline{\mathscr{F}t}}$$
$$\frac{K}{(\hbar c)^{6}} = \frac{2\pi^{3} ln2}{(m_{e}c^{2})^{5}}$$
$$G_{V} = G_{F}g_{V}V_{ud} = G_{F}V_{ud}$$
$$\overline{\mathscr{F}t} = 3073.12 \pm 0.78 \text{ s}$$
$$|V_{ud}|^{2} = 0.94875 \pm 0.00041$$
$$|V_{ud}| = 0.97404 \pm 0.00021$$

$$\label{eq:2.361} \begin{split} & {}^{1}\Delta_{R}^{V} = (2.361\,\pm\,0.038)\% \\ {}^{2}\text{I. S. Towner & J. C. Hardy, Rep. Prog. Phys. 73 (2010) 046301} \end{split}$$

$$\begin{split} |V_{ud}|^2 &= \frac{K}{2G_F^2(1+\Delta_R^V)\overline{\mathscr{F}t}} = \frac{2915.64\pm1.08^1}{\overline{\mathscr{F}t}} \\ \frac{K}{(\hbar c)^6} &= \frac{2\pi^3 \ln 2}{(m_e c^2)^5} \\ G_V &= G_F g_V V_{ud} = G_F V_{ud} \\ \overline{\mathscr{F}t} &= 3073.12\pm0.78 \ s \\ |V_{ud}|^2 &= 0.94875\pm0.00041 \\ |V_{ud}| &= 0.97404\pm0.00021 \end{split}$$

Vus

 $|V_{us}| = 0.22521 \pm 0.00094^2$

$$\label{eq:2.361} \begin{split} ^{1}\Delta_{R}^{V} &= (2.361 \pm 0.038)\% \\ ^{2}\text{I. S. Towner \& J. C. Hardy, Rep. Prog. Phys. 73 (2010) 046301} \end{split}$$

TECHNISCHE UNIVERSITÄT

DARMSTADT

V_{ud}

$$\begin{split} |V_{ud}|^2 &= \frac{K}{2G_F^2(1+\Delta_R^V)\overline{\mathscr{F}t}} = \frac{2915.64\pm1.08^1}{\overline{\mathscr{F}t}} \\ \frac{K}{(\hbar c)^6} &= \frac{2\pi^3 \ln 2}{(m_e c^2)^5} \\ \frac{G_V}{G_V} &= G_F g_V V_{ud} = G_F V_{ud} \\ \overline{\mathscr{F}t} &= 3073.12\pm0.78 \ s \\ |V_{ud}|^2 &= 0.94875\pm0.00041 \\ |V_{ud}| &= 0.97404\pm0.00021 \end{split}$$

Vus

$|V_{us}| = 0.22521 \pm 0.00094^2$

V_{ub}

$$|V_{ub}| = (3.38 \pm 0.36) \times 10^{-3} \iff PDG (2010)$$

 ${}^{1}\Delta_{R}^{V}=(2.361\pm0.038)\%$ 2 I. S. Towner & J. C. Hardy, Rep. Prog. Phys. 73 (2010) 046301

Isospin-Mixing Correction $\delta_{IM} - \delta_{IM}$ for Superallowed Transitions

V_{ud} and the Unitarity of CKM matrix

Finally...

Unitarity

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.99949 \pm 0.00059$

Outline

Test of CKM Matrix CKM matrix Superallowed Transition

2 Isospin-Mixing Correction δ_{IM} δ_{IM} for Superallowed Transitions δ_{IM} for Non-Analogue States

Summary and Perspective

Isospin-Mixing Correction $\delta_{IM} - \delta_{IM}$ for Non-Analogue States

$\delta_{\text{Isospin Mixing}}(\delta_{\text{IM}})$ for Non-Analog States

Isospin Non-Conserving Nuclear Hamiltonian: Isovector : Coulomb + Nucl. Hamil. (USD) + Isovector Single Particle Energies Isotensor : Coulomb + Nucl. Hamil. (USD)

	Nuclear	Present Work ¹						Previous Work
	Hamiltonian	w/o SRC	UCOM	Jastrow type S Argonne V18	RC function Jastrow type CD-Bonn	SRC function Miller Spencer	Strengths from OB (1989)	Ormand & Brown (1985)
$\delta_{\mathrm{IM}} \underset{\mathrm{34}_{\mathrm{Ar}}}{ imes} 10^5$:						•		
	USD USDA USDB	-37.97 -127.8 -134.1	-8.843 -101.2 -120.8	-29.69 -118.9 -134.5	-48.19 -140.2 -142.9	-27.44 -71.25 -106.1	-361.2 	-3.5
$\delta_{IM} \stackrel{\times}{_{34}} \stackrel{10^2}{_{CI}}$:								
	USD USDA USDB	-3.103 -2.734 -3.120	-3.098 -2.730 -3.115	-3.061 -2.697 -3.076	-3.071 -2.712 -3.088	-3.061 -2.695 -3.071	-3.960 	-2.7

¹The δ_{IM} values of present work are given in 4 significant figures.

Summary and Perspective

- CKM unitarity test can be a check for isospin non-conserving Hamiltonian
- The unitarity of CKM matrix is tested,

$$\sum_{i} |V_{ij}|^2 = 0.99949 \pm 0.00059$$

However, more $\mathscr{F}t$ values of parent nuclei should be included. For example, parent nuclei of *psd*, *sdpf*, *pf* shell spaces. δ_{RO} may be revisited.

- There is an indication of transition of isospin non-analog states in ³⁴Ar and ³⁴Cl.
- INC Hamiltonian can be used to describe isospin-forbidden proton emission.

Acknowledgements

- B. Blank, J. Giovinazzo, J-C Caillon, CNRS/IN2P3, Centre d'Etudes Nucléaires de Bordeaux Gradignan, Chemin du Solarium, BP120, 33175 Gradignan, France.
- S. Triambak, TRIUMF / Univ. of Delhi, India
- M. S. Antony, J. B. Bueb Institut de Recherches Subatomiques et Université Louis Pasteur 67037 Strasbourg Cedex 2, France
- Your precious time and attentions...