Y.H. Lam^{1,2}, N. A. Smirnova¹, E. Caurier³

¹ CEN Bordeaux-Gradignan (CNRS/IN2P3 — Université Bordeaux 1), France ² Institut für Kernphysik, Technische Universität Darmstadt, Germany ³ IPHC (CNRS/IN2P3 — Université de Strasbourg), Strasbourg, France

Shell Model as Unified View of Nuclear Structure Strasbourg, France, 8 – 10 October 2012

Physics motivation

Isospin symmetry is broken in nuclear physics

- Coulomb force
- Charge-dependent nuclear forces $v_{pp} \neq v_{nn} \neq v_{pn}^{T=1}$

Experimental evidence on isospin-symmetry breaking

- Splittings of isobaric multiplets
- Isospin-forbidden processes (isospin-forbidden proton emission, Fermi β -decay to non-analogue states, *E*1-transitions in *N* = *Z* nuclei, etc)

Importance of precise theoretical description of the isospin-symmetry breaking

Tests of fundamental symmetries underlying the Standard Model, such as in superallowed $0^+ \to 0^+$ decay and other weak interaction processes in nuclei

Aim of the present study is to construct a shell-model isospin non-conserving Hamiltonian

• We start with an isospin-symmetry invariant shell-model Hamiltonian $[\hat{H}, \hat{T}] = 0$

$$\hat{H}\Psi_{TT_z} \equiv (\hat{H}_0 + \hat{V})\Psi_{TT_z} = E_T \Psi_{TT_z}, \quad \Psi_{TT_z} = \sum_k a_{T_k} \Phi_{TT_z k}$$

W.E. Ormand, B.A. Brown NPA491 (1989)

Y.H. Lam, Ph.D. thesis, CENBG (2011); Y.H. Lam, N. Smirnova, E. Caurier, submitted (2012). 🚊 🧠

Y.H. Lam^{1,2}, N. A. Smirnova¹, E. Caurier³ Shell-model description of isospin-symmetry breaking in nuclei

• We start with an isospin-symmetry invariant shell-model Hamiltonian $[\hat{H}, \hat{T}] = 0$

$$\hat{H}\Psi_{TT_z} \equiv (\hat{H}_0 + \hat{V})\Psi_{TT_z} = E_T \Psi_{TT_z}, \quad \Psi_{TT_z} = \sum_k a_{T_k} \Phi_{TT_z k}$$

We consider an isospin-symmetry non-conserving term

$$\hat{V}_{INC} = \lambda_C \hat{V}_C + \lambda_\pi \hat{V}_\pi + \lambda_\rho \hat{V}_\rho + \lambda_0 \hat{V}^{T=1} + \hat{H}_0^{IV}$$

W.E. Ormand, B.A. Brown NPA491 (1989)

Y.H. Lam, Ph.D. thesis, CENBG (2011); Y.H. Lam, N. Smirnova, E. Caurier, submitted (2012).

Y.H. Lam^{1,2}, N. A. Smirnova¹, E. Caurier³ Shell-model description of isospin-symmetry breaking in nuclei

• We start with an isospin-symmetry invariant shell-model Hamiltonian $[\hat{H}, \hat{T}] = 0$

$$\hat{H}\Psi_{TT_z} \equiv (\hat{H}_0 + \hat{V})\Psi_{TT_z} = E_T \Psi_{TT_z}, \quad \Psi_{TT_z} = \sum_k a_{T_k} \Phi_{TT_z k}$$

We consider an isospin-symmetry non-conserving term

$$\hat{V}_{INC} = \lambda_C \hat{V}_C + \lambda_\pi \hat{V}_\pi + \lambda_\rho \hat{V}_\rho + \lambda_0 \hat{V}^{T=1} + \hat{H}_0^{IV}$$

Within perturbation theory:

$$\langle \Psi_{TT_z} | \hat{V}_{INC} | \Psi_{TT_z} \rangle = E^{(0)}(\alpha, T) + E^{(1)}(\alpha, T)T_z + E^{(2)}(\alpha, T) \left[3T_z^2 - T(T+1) \right]$$

W.E. Ormand, B.A. Brown NPA491 (1989)

Y.H. Lam, Ph.D. thesis, CENBG (2011); Y.H. Lam, N. Smirnova, E. Caurier, submitted (2012). 🛬 🦏

• We start with an isospin-symmetry invariant shell-model Hamiltonian $[\hat{H}, \hat{T}] = 0$

$$\hat{H}\Psi_{TT_z} \equiv (\hat{H}_0 + \hat{V})\Psi_{TT_z} = E_T \Psi_{TT_z}, \quad \Psi_{TT_z} = \sum_k a_{T_k} \Phi_{TT_z k}$$

We consider an isospin-symmetry non-conserving term

$$\hat{V}_{INC} = \lambda_C \hat{V}_C + \lambda_\pi \hat{V}_\pi + \lambda_\rho \hat{V}_\rho + \lambda_0 \hat{V}^{T=1} + \hat{H}_0^{IV}$$

Within perturbation theory:

$$\langle \Psi_{TT_z} | \hat{V}_{INC} | \Psi_{TT_z} \rangle = E^{(0)}(\alpha, T) + E^{(1)}(\alpha, T)T_z + E^{(2)}(\alpha, T) \left[3T_z^2 - T(T+1) \right]$$

 The strength parameters are obtained in a fit to experimental coefficients of the Isobaric Mass Multiplet Equation (IMME):

$$M(\alpha, T, T_z) = a(\alpha, T) + b(\alpha, T)T_z + c(\alpha, T)T_z^2,$$

W.E. Ormand, B.A. Brown NPA491 (1989)

Y.H. Lam, Ph.D. thesis, CENBG (2011); Y.H. Lam, N. Smirnova, E. Caurier, submitted (2012), 💿 🦏

• We start with an isospin-symmetry invariant shell-model Hamiltonian $[\hat{H}, \hat{T}] = 0$

$$\hat{H}\Psi_{TT_z} \equiv (\hat{H}_0 + \hat{V})\Psi_{TT_z} = E_T \Psi_{TT_z}, \quad \Psi_{TT_z} = \sum_k a_{T_k} \Phi_{TT_z k}$$

We consider an isospin-symmetry non-conserving term

$$\hat{V}_{INC} = \lambda_C \hat{V}_C + \lambda_\pi \hat{V}_\pi + \lambda_\rho \hat{V}_\rho + \lambda_0 \hat{V}^{T=1} + \hat{H}_0^{IV}$$

Within perturbation theory:

$$\langle \Psi_{TT_z} | \hat{V}_{INC} | \Psi_{TT_z} \rangle = E^{(0)}(\alpha, T) + E^{(1)}(\alpha, T)T_z + E^{(2)}(\alpha, T) \left[3T_z^2 - T(T+1) \right]$$

 The strength parameters are obtained in a fit to experimental coefficients of the Isobaric Mass Multiplet Equation (IMME):

$$M(\alpha, T, T_z) = a(\alpha, T) + b(\alpha, T)T_z + c(\alpha, T)T_z^2,$$

• Finally, we solve the eigenproblem for an isospin non-conserving Hamiltonian $[\hat{H}_{INC}, \hat{T}] \neq 0$:

$$\hat{H}_{INC}\Psi(\alpha_{p},\alpha_{n}) \equiv (\hat{H}_{0} + \hat{V} + \hat{V}_{INC})\Psi(\alpha_{p},\alpha_{n}) = E\Psi(\alpha_{p},\alpha_{n})$$

W.E. Ormand, B.A. Brown NPA491 (1989)

Y.H. Lam, Ph.D. thesis, CENBG (2011); Y.H. Lam, N. Smirnova, E. Caurier, submitted (2012).

Coulomb strength parameters

Results of the fit to *b* coefficients in *sd*-shell

$$M(\alpha, T, T_z) = a(\alpha, T) + b(\alpha, T)T_z + c(\alpha, T)T_z^2$$

USD (*Brown, Wildenthal, 1988*) or USDA/USDB (*Brown, Richter, 2006*) plus the INC term (\hat{V}_C , \hat{V}_ρ or $\hat{V}^{T=1}$, \hat{H}_0^{IV})

- *b* coefficients $(v_{pp} v_{nn})$; 81 data points (T = 1/2, 1, 3/2, 2);
- rms \approx 32 keV

Y.H. Lam^{1,2}, N. A. Smirnova¹, E. Caurier³

Results of the fit to c coefficients in sd-shell

$$M(\alpha, T, T_z) = a(\alpha, T) + b(\alpha, T)T_z + c(\alpha, T)T_z^2$$

USD (*Brown, Wildenthal, 1988*) or USDA/USDB (*Brown, Richter, 2006*) plus the INC term (\hat{V}_C , \hat{V}_ρ or $\hat{V}^{T=1}$, $\hat{H}_0^{(V)}$)

• c coefficients ($v_{pp} + v_{nn} - 2v_{pn}$); 51 data points (T = 1, 3/2, 2);

• rms \approx 10 keV

Y.H. Lam^{1,2}, <u>N. A. Smirnova¹</u>, E. Caurier³

Shell-model description of isospin-symmetry breaking in nuclei

Staggering of *b*-coefficients of *sd*-shell nuclei

J. Jänecke (1966, 1969); K.T. Hecht (1968); Y.H. Lam, N. Smirnova, E. Caurier (2012)

< <p>Image: A matrix

э.

Contributions of various INC terms to b coefficients

Y.H. Lam^{1,2}, N. A. Smirnova¹, E. Caurier³

Staggering of *c*-coefficients of *sd*-shell nuclei

J. Jänecke (1966, 1969); K.T. Hecht (1968); Y.H. Lam, N. Smirnova, E. Caurier (2012)

Y.H. Lam^{1,2}, N. A. Smirnova¹, E. Caurier³ Shell-model description of isospin-symmetry breaking in nuclei

→ ∃ →

Contributions of various INC terms to c coefficients

Y.H. Lam^{1,2}, <u>N. A. Smirnova</u>¹, E. Caurier³

Shell-model description of isospin-symmetry breaking in nuclei

1. IMME beyond a quadratic form

Quadratic IMME has been deduced at first order in perturbation theory. Higher-order terms in T_z may be present due to

- isospin-symmetry breaking three-body (or four-body) interactions;
- Coulomb effects at second order in perturbation theory (isospin mixing)

$$M(\alpha, T, T_z) = a(\alpha, T) + b(\alpha, T)T_z + c(\alpha, T)T_z^2 + d(\alpha, T)T_z^3 + e(\alpha, T)T_z^4$$

Theoretical estimations of $d \sim 1$ keV. E.M. Henley, C.E. Lacy (1969); J. Jänecke (1969); G.F. Bertsch, S. Kahana (1970)

$$J^{\pi} = 0^+$$
 quintet ($T = 2$) in $A = 32$ isobars

Nuclide	Mass excess (keV)	References
³² Ar	-2200.4 (18)	K. Blaum et al (2003)
³² Cl	-8288.8 (10)	C. Wrede et al (2010); A. Kankainen et al (2010)
³² S	-13967.57 (28)	W. Shi et al (2005); S. Triambak et al (2006)
³² P	-19232.46 (15) -19232.78 (20)	Redshow et al (2008) AME03, P.M. Endt (1998)
³² Si	-24080.86 (77) -24080.92 (5) -24077.69 (30)	A. Paul et al (2001) M. Redshow et al (2008) A.A. Kwiatkowski et al (2009)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Experimental and theoretical *d* coefficients for the 0^+ quintet in A = 32

	$\chi^2/n_{\rm quadr.}$	$\chi^2/n_{ m cubic}$	d (keV)
S. Triambolk at al (2006)	C F	0.77	0 = 4 (10)
5. mambak et al (2006)	0.0	0.77	0.54 (16)
A. Kwiatkowski et al (2009)	30.6	0.46	1.00 (9)
Set A from A. Kankainen et al (2010)	9.9	0.86	0.52 (12)
Set B Ibid.	12.3	0.31	0.60 (13)
Set C Ibid.	28.3	0.002	0.90 (12)
Set D Ibid.	30.8	0.09	1.00 (13)
Set E Ibid.	6.5	0.74	0.51 (15)
Set F Ibid.	8.3	0.28	0.62 (16)
	4.00	0.005	0.00
A. Signoracci, B.A. Brown (2011)	1.09	0.005	0.39
Present work (2012)	0.26	0.02	-0.19

Comparison of *b*, *c*, *d*, and *e* coefficients for the 0^+ quintet in A = 32

		<i>b</i> , <i>c</i> (keV)	b, c, d (keV)	b, c, e (keV)	b, c, d, e (keV)
Experiment	b	-5471.85 (27)	-5472.83 (29)	-5470.45 (29)	-5472.64 (68)
	d	208.33 (14)	0.89 (11)	204.92 (23)	0.83 (22)
	e	_	_	0.69 (11)	0.06 (19)
	χ^2/n	32.15	0.10	13.80	
Signoracchi,	b	-5417.7	-5419.0	-5417.7	-5419.0
Brown (2011)	С	209.1	209.1	209.0	209.0
	d	—	0.39	_	0.39
	е	—	_	0.03	0.03
	χ^2/n	1.09	0.006	2.17	—
Present work	b	-5464.4	-5463.8	-5464.4	-5463.8
	С	207.6	207.6	207.4	207.4
	d	—	-0.19	_	-0.19
	е	—	_	0.045	0.045
	χ^2/n	0.26	0.017	0.50	_

IMME beyond the quadratic form in the A = 32 quintet

Isospin-mixing leads to breaking of the quadratic IMME.

A. Signoracchi, B.A.Brown, PRC (2011).

Y.H. Lam, N. Smirnova, E. Caurier, submitted to PRC (2012)

		<i>b</i> , <i>c</i> (keV)	b, c, d (keV)	b, c, e (keV)	b, c, d, e (keV)	
A = 24 Experiment	b c d e χ^2/n	-4178.8 (9) 225.9 (4) 1.48	-4177.7 (11) 223.4 (16) 0.91 (58) - 0.49	-4176.0 (11) 221.9 (16) 0.61 (58) 0.02	-4175.6 (32) 221.7 (30) -0.24 (176) 0.75 (107)	
A = 24 Theory	b c d e χ^2/n	-4179.0 224.3 8.9	-4178.95 224.3 -0.02 0.24	-4179.0 219.7 1.04 0.0008	-4178.95 219.7 -0.02 1.04	
A = 28 Experiment	b c d e χ^2/n	-4808 (2) 216 (1) 0.85	-4803 (4) 208 (7) 2.77 (229) 0.24	-4800 (4) 207 (7) 1.32 (229) 0.48	-4810 (16) 212 (12) 9.35 (1354) -3.49 (707)	
A = 28 Theory	$b \\ c \\ d \\ e \\ \chi^2/n$	4869.7 216.8 63.6	-4869.6 216.8 -0.05 31.8	-4869.7 204.5 2.78 0.007	-4869.6 204.5 -0.05 2.78	

Analysis of 0^+ quintets in A = 24 and A = 28

Y.H. Lam, N. Smirnova, E. Caurier (in preparation).

A = A = B
 A = B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

2. Beta-delayed proton emission from ²²Al

Experimental study of βp emission:

- M.D. Cable et al (1982) $4^+(IAS) \rightarrow 3/2^+_{gs}, 5/2^+_1$
- B. Blank et al (1997) $4^+(IAS) \rightarrow 7/2^+_1$
- N.L. Achouri et al (2006) 4⁺(IAS) → 7/2⁺₁, 9/2⁺₁

- E - N

Beta-delayed proton emission from ²²AI

Present results: from USD interaction and INC term. θ_l^2 are spectroscopic factors, Γ_p are proton widths, $\Gamma_p = 2 \sum_l \theta_l^2 \gamma^2 P_l(Q_p)$

²¹ Na	E th _{exc}	Present work				Brown (1990)			
	(MeV)	$10^4 \theta_I^2$		Гр	BR	$10^4 \theta_l^2$		Γp	BR
	-	/ = 0	<i>I</i> = 2	(keV)	(%)	<i>l</i> = 0	I = 2	(keV)	(%)
3/2+	0.0		0.090(2)	0.04(0)	1.6(0)		0.13	0.055	5.3
5/2+	0.236		0.267(4)	0.11(0)	4.3(1)		0.18	0.071	6.9
7/2+	1.779	0.009(4)	4.73(21)	1.21(6)	45.7(22)	0.04	1.71	0.412	40.0
9/2+	2.780	0.006(0)	2.54(23)	0.38(4)	15.4(14)	0.09	0.56	0.144	14.0
5/2+	3.694		0.28(7)	0.02(1)	1.0(2)		0.24	0.017	1.6
$11/2^+$	4.428		1.91(30)	0.09(1)	3.7(6)		1.22	0.041	4.0
5/2+	4.556		0.37(5)	0.02(0)	0.6(1)		1.34	0.043	4.1
3/2+	4.785		0.25(2)	0.01(0)	0.3(0)		0.49	0.012	1.1
7/2+	5.328	0.184(4)	0.72(17)	0.08(1)	3.3(2)	0.00	0.11	0.001	0.1
3/2+	5.784		0.10(0)	0.00(0)	0.0(0)		0.07	0.000	0.0
9/2+	6.078	0.90(5)	0.17(2)	0.18(1)	7.1(4)	0.10	0.07	0.008	0.8
13/2+	6.141		0.54(3)	0.00(0)	0.1(0)		0.78	0.004	0.4
9/2+	6.192	1.05(3)	6.9(2)	0.21(1)	8.5(2)	2.29	5.69	0.169	16.5
7/2+	6.274	1.02(7)	14.2(4)	0.21(1)	8.4(5)	0.40	11.90	0.043	4.1

Remark: USDA interaction produces strong mixing for the 4^+ (T = 2 IAS) in ²²Mg.

Summary and Outlook

- We constructed a very precise **INC shell-model Hamiltonian** in *sd* shell with a large potential of applications.
- The INC Hamiltonian accurately describes the **staggering** of the IMME *b* and *c* coefficients with mass numbers.
- The INC Hamiltonian allows to study the validity of the quadratic IMME in quartets and quintets.
- **Isospin-forbidden nucleon emission** branching ratios (like in ²²*AI*) are very sensitive to the detailed structure of the INC potential.
- Isospin-mixing correction to superallowed β decay (see next talk by Y.H. Lam).
- Extension to *sdpf* and *pf* shell nuclei is in progress.
- Experimental information on proton-rich nuclei with $N \sim Z$ (displacement of energy levels in mirror nuclei, Q-values, lifetimes, branching ratios, spectroscopic factors and partial widths isospin-forbidden particle emission, isospin-forbidden Fermi decay, ...) is important to constrain the model.