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Introduction 

Bound states 

•  Wave function of finite size 
(bound to the box) 

Variational method, multiple ways to 
discretize wave function and solve the 

Schrödinger eq. 

Scattering 
•  Configuration space wave 
functions extend to infinity. 

Singularities in momentum space… 

R. Lazauskas, J. Carbonell  
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Results for AV18 and AV18+UIX models have also been
obtained and agree at the 1% level with those given in Ref.
[35].
The J"=0+ and 1+ positive-parity states, determining the

low-energy behavior of the n+3H cross section, do not have
any S-matrix singularity, except the triton bound state thresh-
old. It is therefore not surprising that the n+3H scattering
lengths are found to be correlated with 3N binding energy, in
a similar way as n+d doublet scattering length is Ref. [36].
This is the reason why realistic local interaction models, pro-
viding too low 3N binding energies, overestimate n+3H
zero-energy cross sections. Once triton binding energy is cor-
rected, for instance by implementing 3NF, a value close to
the experimental one is automatically obtained. From Table
VIII it can be seen that the Doleschall potential agrees with
the lower bound of experimentally measured zero-energy
cross section, whereas the AV18+UIX model coincides with
its upper bound. The zero-energy scattering cross section is
thus fairly well reproduced.
The situation with scattering lengths looks more precari-

ous. The values found in the literature are hardly compatible
with each other [37], as can be seen in Table VIII. The usual
way to get ai is to express them in terms of the measured
quantities ac and !!0", by reversing relations (16) and (17).
This procedure, represented in Fig. 5, is numerically un-
stable. Indeed, once !!0" is fixed, the domain of permitted
a1+ and a0+ values is given by the ellipse of Eq. (17) in the
!a0+ ,a1+" plane. Since there are uncertainties in !!0", the
permitted values of scattering lengths are trapped in between
two ellipsis (dotted curves in Fig. 5). On the other hand, each
measurement of ac restricts a1+ and a0+ values to lie on a
straight line which spreads into a band due to experimental
errors (see Fig. 5). The lower band displayed in Fig. 5 fol-
lows from the R-matrix analysis result ac=3.607±0.017 fm
[41], while the upper one comes from the experimental mea-
surement ac=3.82±0.07 fm from Ref. [39]. By assuming an

exact value of ac, e.g., ac=3.624 fm given by the top of the
lower band, the present—though small—experimental error
in !!0" leads to two sets of solutions which spread over a
wide range: (i) a0+= #4.31−5.00$ , a1+= #3.16−3.40$, and (ii)
a0+= #2.25−2.94$ , a1+= #3.85−4.08$ fm. This example illus-
trates the difficulty of extracting reliable values of a0+ and
a1+. The accurate determination of ai would require us to
gain one order of magnitude in measuring both !!0" and ac.
As it can be seen also from Fig. 5, the coherent scattering

length value ac=3.82±0.07 fm of Ref. [39] is in evident dis-
agreement with the experimentally measured zero-energy
cross sections, since it does not intersect the !!0" ellipsis. In
this respect, the more recent values ac=3.607±0.017 fm [41]
and ac=3.59±0.02 fm [40] are more reliable. The Doleschall
nonlocal potential provides ac=3.63 fm, one standard devia-
tion from these measurements, and seems to be more com-
patible with data than the AV18+UIX model. Figure 5 sug-
gests also that the real value of the zero-energy cross section
should coincide with the lower bound of the experimental
result.
The success in describing n+3H scattering lengths by the

Doleschall potential is visible at slightly higher energies as
well. In Fig. 6 we present our calculated elastic cross section
for the scattering energies in the n+3H center of mass energy
range from 0 to 3 MeV. The Doleschall potential reproduces
experimental cross sections near its minima at Ec.m.
%0.4 MeV. In this region both Malfliet-Tjon (MT) I-III—
the only potential known to us being capable to reproduce
the resonant region [43]—and AV18+UIX overestimate the
experimental value.
In previous works [30,37,42,44,45] we pointed out that

local realistic interaction models underestimate the cross sec-
tions near the resonance peak, Ec.m.=3 MeV. At that time,
calculations had been, however, performed with a limited
number of partial waves and the failure was attributed in Ref.
[47] to a lack of convergence. Recently we have consider-
ably increased our basis set and have shown that the dis-
agreement is indeed a consequence of nuclear models

FIG. 5. (Color online) Extraction procedure for n+3H singlet
!a0+" and triplet !a1+" scattering lengths from measurements of zero-
energy cross section (elliptic band) [38] and coherent scattering
length (linear bands) [39–41]. The values of ai are given by the
intersection of these two curves. Bandwidths are related to experi-
mental errors and, even being small, they make their determination
very unstable.

FIG. 6. (Color online) Comparison between experimental and
theoretical n− 3H total cross section calculated with several local
and nonlocal NN potentials.
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Scattering requires a much more « fine tuning » of the interactions 
 
When all bound states are OK, VNN+VNNN  can still fail there !!! 
 
e.g. n + 3H 
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I. INTRODUCTION

In a fundamental description of nucleon-nucleon (NN) in-
teraction, the existence of the nucleon internal structure can-
not be ignored. The standard NN potentials are actually ef-
fective tools aiming to mimic a much more complicated
interaction process, of which it is not even clear that it could
be reduced to a potential problem. The NN system can be
rigorously described only when starting from the underlying
QCD theory for the nucleon constituents: quarks and gluons.
This is, however, a very difficult task, which is just becoming
accessible in lattice calculations [1–3], and that will be in
any case limited for a long time to the two-nucleon system.
In any attempt to describe the nuclear structure, one is thus
obliged to rely on more or less phenomenological models.
Since the nucleon size is comparable to the strong inter-

action range, the effects of its internal structure are expected
to be considerable. In particular the NN interaction should be
nonlocal, at least for small internucleon distances. In addi-
tion, we have no reason to believe that nuclear interaction is
additive as the Coulomb one: the interaction between two
nucleons may not be independent of the presence of a third
one in their vicinity. Finally the interplay of nucleon confine-
ment and relatively large kinetic energies can generate—e.g.,
via virtual nucleon excitations—a rather strong energy de-
pendence in the interaction. Despite numerous studies de-
voted to this subject, we still do not have a clear understand-
ing of the relative importance of these effects in NN force,
specially concerning their influence on experimentally mea-
surable quantities.
This work investigates the consequences of using nonlo-

cal NN forces in describing the A=3 and A=4 nuclear sys-
tems. The locality of NN force, assumed in some of the so-
called realistic models [4,5], is due more to numerical
convenience than to convincing physical arguments. The
two-nucleon experimental data, since they contain only on-
shell physics, are successfully reproduced without including
any energy dependence or nonlocality in the NN force. How-
ever, they all suffer from the underbinding problem, i.e., two-
nucleon interaction alone fails to reproduce the nuclear bind-
ing energies, starting already from the simplest A=3 nuclei.
Figure 1 shows the relative differences between experimental
and theoretical binding energies for He isotopes obtained
with AV18 potential [4,6,7]. These differences increase with

the mass number A and vary from !0.7 MeV in 3He to
!10 MeV in the case of 10He.
The inclusion of nonlocal terms—as in Nijm 93 and Nijm

I potentials [5]—does not remove this discrepancy [8,9]. If in
some cases, as in CD-Bonn [10] or in chiral models [11–13],
they considerably improve 3N and 4N binding energies, the
improvement is still not sufficient to reproduce the experi-
mental values. This underbinding is rather easily removed by
means of three-nucleon forces (3NF). The existence of such
forces is doubtless, but their strength depends on the NN
partner in use and is determined only by fitting requirements.
However, the use of 3NF, to some extent, can be just a

matter of taste. It has been shown in Refs. [14,15] that two
different, but phase-equivalent, two-body interactions are re-
lated by a unitary, nonlocal, transformation. One thus could
expect that a substantial part of 3N and multinucleon forces
could also be absorbed by nonlocal terms. A considerable
simplification would result if the bulk of experimental data
could be described by only using two-body nonlocal interac-
tion. In fact, the unique aim of any phenomenological model
is to provide a satisfactory description of the experimental
observables, but it is worth reaching this aim by using the
simplest possible approach.

FIG. 1. (Color online) Comparison between the experimental
and theoretical calculations with AV18 interaction in He isotopes.
Results are taken from Refs. [6,7].
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Introduction 

A dream: to solve scattering problem with a similar ease as bound state 
one (avoiding complex singularities or boundary conditions) 

•  Lorentz integral transform (inclusive process) 

 N. Barnea, V. D. Efros, W. Leidemann, and G. Orlandini, Phys. Rev. C 63, 057002 (2001)  

•  Complex energy method in momentum space 
 E. Uzu, H. Kamada, and Y. Koike, Phys. Rev. C 68, 061001 (2003)  
 A. Deltuva and A. C. Fonseca, Phys. Rev. C 86, 011001(2012) 

•  Momentum lattice technique 
 O. A. Rubtsova, V. N. Pomerantsev, and V. I. Kukulin, Phys. Rev. C 79, 064602 (2009) 

•  Continuum discretization (above break-up threshold?) 
A. Kievsky, M. Viviani, and L. E. Marcucci, Phys. Rev. C 85, 014001 (2012).  

•  Complex scaling method 
 B.Giraud, K.Kato and A. Ohnishi, J. of Phys. A37 (2004),11575 (passing via spectral function) 

 Y.Suzuki, W.Horiuchi, D.Baye, PTP,123 (2010) (passing via spectral function) 
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Complex scaling method (2b scattering) 
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Driven radial Schrödinger equation: 

( )
l

in rΨ

J. Nuttal and H. L. Cohen, Phys. Rev. 188 (1969) 1542 
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( ) ~ exp( ~ exp( sin ))
l

sc r ikr kr θΨ −→∞%

Exp. bound if θ<π/2 

Exp. bound by the short 
range pot. term Vs 

Extraction of amplitudes: 
•  From the asymptote of the solution 

•  Using Green’s theorem  
( ) ~ ( ) ( )( ( ) ( ))

l l l

in i s i sc in i i
l lA k re V re r re e drθ θ θ θΨ Ψ +Ψ∫ %

( ) ( ) / exp( ...)
l

sc i
lA k r ikre θ=Ψ →∞ +%

R. Lazauskas, J. Carbonell  
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Complex scaling method (Resonances) 

Analiticity of the potential, limitation of the scaling angle:  

( ) ~ exp( ) exp( )n n inV r r r e θµ µ⎯⎯→ −− Starts to diverge for θ>π/(2n) 

Hardcore propagates! Sets upper limit on angle θ. 

R. Lazauskas, J. Carbonell  

M. Rittby, N. Elander and E. Brandas, Phys. Rev. A 24 (1981) 1636 



09/10/12 7 

nn pp 

Complex scaling method (2b scattering) 

Ecm=1 MeV 

R. Lazauskas, J. Carbonell  

Solution obtained by imposing ϕ(rmax)=0 condition at the border rmax of the finite grid. 
Using spline discretization technique. 
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nn pp 

Complex scaling method (2b scattering) 

R. Lazauskas, J. Carbonell  
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Solution obtained by imposing ϕ(rmax)=0 condition at the border rmax of the finite grid. 
Using spline discretization technique. 
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Complex scaling method (2b scattering) 
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R. Lazauskas, J. Carbonell  
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Complex scaling method (3b scattering) 
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Complex scaling method (3b scattering) 
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Faddeev eq. (particles of identical mass) 

Complex scaling θθ ii yeyxex ⎯→⎯⎯→⎯ ;

1 1 1( , )sc i iF x e y eθ θr rOutgoing wave                       becomes exponentialy bound:  
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Complex scaling method (3b scattering) 
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Faddeev eq. (particles of identical mass) 
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R. Lazauskas, J. Carbonell  
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Complex scaling method (3b scattering) 

x1 

y1 

Domain of resolution 

Domain of interaction 

OK 

Extraction of the scattering amplitudes: 
 
•  From the asymptote of the solution 

•  Using Green’s theorem  

1 1 1( , )scF x yr r%

1 1

6 3 3
2 2 3 3( ) ~ ( ) ( ) ( )el in s i s i sc in i

lA q V x e V x e e d xd yθ θ θ⎡ ⎤Ψ + Ψ +Ψ⎣ ⎦∫ ∫ % % %

Cumbersome for break-up!! 

R. Lazauskas, J. Carbonell  

Solution: Faddeev equations+PW decomposition+spline discretization of xy 
R. Lazauskas, PhD thesis, Université Joseph Fourier Grenoble (2003) 
R. Lazauskas and J. Carbonell, Phys. Rev. C 84 (2011), 034002  
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Complex scaling method (3b scattering) 

Ref.[23] J. L. Friar et al.:, Phys. Rev. C 51 (1995) 2356. 
Ref.[24] A. Deltuva, A. C. Fonseca et al.:,, Phys. Rev. C 71 (2005) 064003. 
 

R. Lazauskas, J. Carbonell  
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Complex scaling method (3b scattering) 

Ref.[24] A. Deltuva, A. C. Fonseca et al.:, Phys. Rev. C 71 (2005) 064003. 

R. Lazauskas, J. Carbonell  
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Complex scaling method (3b scattering) 

R. Lazauskas, J. Carbonell  

Ref.[23] J. L. Friar et al.:, Phys. Rev. C 51 (1995) 2356. 

- 

- 
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Complex scaling method (3-body system with optical pot.) 
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R. Lazauskas, J. Carbonell  
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4-body system 

R. Lazauskas, J. Carbonell  

X+3X X+X+2X 
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Limitation for complex scaling angle: 

• 3+1 channels 

• 2+2 channels 

X+3X 

2X+2X 

X+X+2X 

X+X+X+X 

Solution: FY equations+PW decomposition+spline discretization of xyz 
R. Lazauskas, PhD thesis, Université Joseph Fourier Grenoble (2003) 

 



09/10/12 19 

4-nucleon system 

R. Lazauskas, J. Carbonell  

n+3H (T=1) scattering with MT I-III potential 
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4-nucleon system 

R. Lazauskas, J. Carbonell  

n+3H (T=1) scattering with MT I-III potential 

Elab 
(MeV) 

MT I-III (this work) INOY (Deltuva) Exp.  
σt (mb) σe (mb) σb (mb) σt (mb) σe (mb) σb (mb) σt (mb) 

14.4 922 11   933 928 19 947 978 ± 70 

18.0 690 25 715 697 41 738 750 ± 60 

22.1 512 38 550 536 61 597 620 ± 24 
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NCSM application? 

R. Lazauskas, J. Carbonell  
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Deuteron binding energy calculation compared with np scattering calculation  
at 20 MeV for 3S1 wave 
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• Similar convergence (only less regular) as for the weakly bound state calculations 
• Results for the soft potentials converge much faster  
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Method summary  

 
C  Trivial boundary conditions.  
C  Full information: elastic, inelastic and break-up amplitudes obtained after minimal 
modification of the bound state code 
C  Valid for any exponentially bound interaction, possible to include Coulomb. Inclusion 
of Coulomb for A>2 systems requires small improvable approximation - neglecting the 
action of the polarization terms on incoming wave.  

K  Problem solved in complex arithmetics. 
K  Potential must be analytical and remain short range after complex scaling (sets upper 
limit on θ) 
K  Additional limitation on θ for A>2 problem (sets upper limit on θ, this angle reduces 
when increasing scattering energy) 
 
D  Hamiltonian is not Hermitian anymore. It is more costly to ensure unitarity of the S-
matrix. Nevertheless phases are obtained very accurately, convergence of inelasticity 
parameters if they are small (or close to 1) is slower. 
D  Difficulty to treat close to the threshold region (some of outgoing waves converge 
slowly)  

R. Lazauskas, J. Carbonell  
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Conclusion 

 
•  Complex scaling method is efficient tool to solve bound, resonant as well as 
continuum states problem without explicit  treatment of the boundary 
conditions  

•  Scattering problem might be solved using bound state methods in complex 
arithmetic (almost by any config. space bound state technique and require very 
limited effort) 

•  Simple extension of the formalism to many-body scattering case 

•  Reliable results are already obtained for 3-body and 4-body elastic and break-
up scattering, including long-range and optical potentials 

R. Lazauskas, J. Carbonell  
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4-nucleon system 

R. Lazauskas, J. Carbonell  

“p+3H” (T=0) scattering with MT I-III potential, 
(by ignoring Coulomb) 

Ecm 
(MeV) 

MT I-III (this work) Yamaguchi (Uzu) 

δ (°) η δ (°) η 

7.3 -4.46 0.988   -5.51 0.899 

20.5 -56.6 0.650 -61.7 0.746 

Jπ=0+ 

δ (°) η 

L=0 S=0 -56.6 0.650 

S=1 68.8 0.947 

L=1 S=0 -85.3 0.945 

S=1 64.9 0.886 

L=2 S=0 47.1 0.678 

S=1 1.09 0.896 

Ecm=20.5 MeV 
δ (°) η 

L=0 S=0 -81.0 0.618 

S=1 56.9 0.882 

L=1 S=0 78.9 0.918 

S=1 52.8 0.843 

L=2 S=0 44.7 0.720 

S=1 4.49 0.851 

Ecm=30. MeV 


