Nuclear Structure Study of the Mirror Nuclei ²²Ne and ²²Mg around the ²¹Na+Proton Threshold

M. BOUHELAL F. HAAS E. CAURIER F. NOWACKI LPAT, Université de Tébessa, Algérie IPHC, Strasbourg IPHC, Strasbourg IPHC, Strasbourg IPHC, Strasbourg • The PSDPF interaction obtained using fitting procedure: 0 and 1 $\hbar\omega$ states throughout the sd shell,

• To validate this interaction, we test it by calculating excitation energies and electromagnetic transition observables for nuclei at the begin and the end of the shell and particularly for different isotopic chains to see the evolution of these properties for a fixed Z and increasing N

Results for the mirror nuclei ²²Ne and ²²Mg

The resonant radiative capture reaction ²¹Na(p,γ)²²Mg
 in nucleosynthesis
 (breakout of the hot CNO cycle)
 the cross sections spin-parity assignments
 (around the proton- threshold at ~ 5.51 MeV)

• The structure of ²²Mg is not well known because it is experimentally difficult to reach

• Comparison with the well studied mirror ²²Ne is recommended

 ~ 6.35 MeV <u>Experimentally</u>
 ²²Mg spectrum contains :

 16 reported states with not so well fixed J^π

<u>PSDPF</u> : ~ 6.35 MeV
✓ 15 predicted states
✓ 12 + states and 3 – states

The proposed spectra versus experiment

²² N	le	2	² Mg	PSDPF	
Ex	\mathbf{J}^{π}	Ex	\mathbf{J}^{π}	Ex	J^{π}_{n}
0	0+	0	0+	0	0+1
1,275	2+	1,247	2+	1,363	2 ⁺ 1
3,358	4+	3,308	4+	3,418	4 ⁺ 1
4,456	2+	4,402	2+	4,295	2 ⁺ 2
5,146	2-	5,006	0+,1,2,3,4+	4,987	2-1
5,332	1+	5,318	2+,3,4+	5,408	1+1
5,363	2+	5,035	2+	5,187	2 ⁺ ₃
5,524	(4) ⁺	5,293	$(3^+, 4^+, 5^+)$	5,473	4 ⁺ 2
5,641	3+	5,452	(2+,3+)	5,468	3+1
5,910	3-	5,838	2+,3,4+	5,632	3-1
6,120	2+	5,711	2+	6,243	2+4
6,234	0+	5,962	0+	6,273	0^{+}_{2}
		6,046		6,288	0-1
6,310	(6)+	6,254	(6+)	6,326	6 ⁺ 1
6,347	4+	6,247	(4+)	6,287	4+
PMSD =	125 KeV	PMSD =	108 KeV		
RMSD =	125 KeV	RMSD =	198 KeV		

				EMT p	roperties	of ^{22}N	le			
E. (MeV	(1 ⁿ a)	E. (MeV)	(I ⁿ a)	E (EXP)	2 (PSDPF)	v mult.	R.(EXP)	v mult.R.		
1,275	(2+)	0	(0*)	5.24 ps 7	4.86 ps	E2	100	E2	100	
3,358	(4*)	1,275	(2+)	325 fs 9	308 fs	E2	100	E2	100	
4,456	(2+)	1,275 0	(2 ⁺) (0 ⁺)	53 fs 9	3 fs	E2+M1 E2	97.0 20 3.0 20	E2+M1 E2	97.5 2.5	
5,146	(2')	4,456 1,275 0	(2 ⁺) (2 ⁺) (0 ⁺)	1.1 ps 3	0.5 ps	E1+M2 E1+M2	47 3 53 3	E1+M2 E1+M2 M2	0 91 9	
5,332	(1*)	1,275 0 4,456	(2*) (0*) (2*)	1.6 fs 3	1.0 fs	E2+M1 M1	33 5 67 5	E2+M1 M1 E2+M1	23 49 28	
5,363	(2+)	1,275 0	(2 ⁺) (0 ⁺)	99 fs 17	6 fs	E2+M1 E2	86 <i>3</i> 14 <i>3</i>	E2+M1 E2+M1	99 1	
5,524	(4*)	3,358 1,275	(4 ⁺) (2 ⁺)	33 fs 4	12 fs	E2+M1 E2	98.4 3 1.6 3	E2+M1 E2	98.9 1.1	
5,641	(3+)	3,358 1,275	(4 ⁺) (2 ⁺)	< 4 fs	3.7 fs	E2+M1 E2+M1	31 2 69 2	E2+M1 E2+M1	25 75	
5,910	(3°)	4,456 3,358 1,275	(2 ⁺) (4 ⁺) (2 ⁺)	48 fs 16	198 fs	E1+M2 E1+M2	15 4 15 4 70 3	E1+M2 E1+M2 E1+M2	57 1 35	
6,120	(2+)	4,456 1,275 0	(2*) (2*) (0*)	35 fs 13	7 fs	E2+M1 E2+M1 E2	14 3 83 3 3 2	E2+M1 E2+M1 E2	16 84 0	
6,234	(0+)	5,332 1,275	(1 ⁺) (2 ⁺)	346 fs 115	14 fs		100	M1 E2	21 79	
6,234	(0°)	5,332 1,275 5,146	(1*) (2*) (2)	+	496 fs			E1 M2 E2	85 13.5 1.5	
6,310	(6*)	3,358	(4*)	69 fs 6	65 fs	E2	100	E2	100	
6,347	(4+)	3,358 5,524 5,910	(4*) (4*) (3*)	19 fs 4	2 fs	E2+M1	100	E2+M1 E2+M1 E2+M1	82 2 16	6

EMT properties of ²²Mg

E _i (MeV)	(J [#] _i)	E _f (MeV)	$(\mathbf{J}^{\pi}_{\mathbf{f}})$	ζ (EXP)	ζ(PSDPF)	γ mult.	R _k (EXP)	γ mult.Rk	(PSDPF)
1,247	(2*)	0	(0*)	3.0 ps 11	4.0 ps	E2	100	E2	100
3,308	(4*)	1,247	(2*)	288 fs 65	277 fs	E2	100	E2	100
4 402	(2*)	3 308	(4)	< 30 fs	3.60		5 4	E2	0
	(-)	1.247	(25)			E2+M1	87 4	E2+M1	100
		0	(0 ⁺)				8 4	E2	0
5,006	(2')	4,402	(2+)	< 24 ns	0.6 ps		100	E1+M2	0.4
		1,247	(2)					E1+M2	97.7
		0	(0*)					M2	1.9
5,035	(2*)	1,247	(2*)	< 1.0 ns	6.0 fs	E2+M1	88 4	E2+M1	90
		0	(0*)				12 4	E2	10
5,293	(4*)	3,308	(4*)	63 fs 22	16 fs	(E2+M1)	100	E2+M1	100
5,318	(1*)	1,247	(2+)	< 24 ns	1.4 fs		70 15	E2+M1	32
		0	(0*)				30 15	M1	68
5,452	(3*)	3,308	(4*)	< 1.0 ns	4.5 fs		22 2	E2+M1	23
		1,247	(2^{+})			(E2+M1)	78 2	E2+M1	77
5,711	(2+)	1,247	(2+)	40 fs 14	8 fs	E2+M1	87 3	E2+M1	80
		0	(0)				13 3	E2	11
		4,402	(2*)					E2+M1	9
5,838	(3)	3,308	(4*)	< 24 ns	0.2 ps		20 15	E1+M2	1
		1,247	(2*)				80 15	E1+M2	33
		4,402	(2*)					E1+M2	54
		5,006	(2)					E2+M1	6
		5,035	(2)					E1+M2	4
		5,293	(4')					E1+M2	1
5,962	(0*)	5,318	(1 ⁺)		27.6 fs			M1	15
		1,247	(2*)		202020400000000			E2	85
6,046	(0)	5,318	(1*)		870 fs			E1	78.4
		1,247	(2)					M2	20.2
		5,006	(2)					E2	1.4
6,247	(4*)	3,308	(4*)	< 24 ns	3 fs		100	E2+M1	92
		5,293	(4*)					E2+M1	5
		1,247	(2*)					E2+M1	3
6,254	(6*)	3,308	(4*)		51 fs	(E2)		E2	100

Examine now the gamma decay schemes

existence of a 0⁻ state in the 2 mirror nuclei

(,	
		$p_{1/2} p_{3/2} d_{5/2} s_{1/2} d_{3/2} f_{7/2} p_{3/2} f_{5/2} p_{1/2} p_{1/2} p_{3/2} d_{5/2} s_{1/2} d_{3/2} f_{7/2} p_{3/2} f_{5/2} p_{1/2}$
	0.01083925	
	0.01775216	2 4 2 0 2 0 0 0 1 4 2 1 0 0 0 0 1 I NIS U State has a very
	0.01173522	2 4 2 0 2 0 0 0 2 3 2 1 0 0 0 0 0
	0.01526562	2 4 2 1 1 0 0 0 0 1 4 1 2 0 0 0 0 0 fragmented wave function
	0.01992269	2 4 2 1 1 0 0 0 1 4 2 0 1 0 0 0 0
	0.01257051	2 4 2 1 1 0 0 0 1 4 2 1 0 0 0 0 0
	0.02328984	2 4 2 1 1 0 0 0 0 1 4 3 0 0 0 0 0 0 0
	0.01441246	2 4 2 1 1 0 0 0 2 2 2 1 0 0 0 0 1
	0.01563034	
	0.01527262	2 4 2 2 0 0 0 0 1 4 1 1 1 0 0 0 0
	0.02953421	2 4 2 2 0 0 0 0 1 4 2 1 0 0 0 0 0
	0.01561822	2 4 2 2 0 0 0 0 2 3 2 1 0 0 0 0 0
	0.01507258	2 4 3 0 1 0 0 0 1 4 1 1 1 0 0 0 0 0 0 (~50%) n ~ ~ sd
	0.01447996	$2 4 3 0 1 0 0 0 1 4 2 0 1 0 0 0 0 - (30707 P_{1/2} - 7 30$
	0.03261885	2 4 3 0 1 0 0 0 0 1 4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0.02185823	2 4 3 0 1 0 0 0 1 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0.01491854	2 4 3 0 1 0 0 0 2 3 1 1 1 0 0 0 0 - ($2 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 $
	0.01565984	2 4 3 0 1 0 0 0 2 3 2 0 1 0 0 0 0
	0.020/0415	2 4 3 0 1 0 0 0 2 3 2 1 0 0 0 0 0
	0.01965140	
	0.015/0/52	
	0.01020/10	2 4 5 1 0 0 0 0 1 4 1 2 0 0 0 0 0
	0.02/1251/	2 4 5 1 0 0 0 0 1 4 2 0 1 0 0 0 0
	0.01030220	2 4 3 1 0 0 0 0 1 4 2 1 0 0 0 0 0
	0.02313745	2 4 3 1 0 0 0 0 1 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0.01962589	
	0.02980163	2 4 3 1 0 0 0 0 2 3 3 0 0 0 0 0 0
	0.01920002	2 4 4 0 0 0 0 0 1 4 1 1 1 0 0 0 0
	0.02128135	2 4 4 0 0 0 0 0 1 4 2 0 1 0 0 0 0
	0.02093333	2 4 4 0 0 0 0 0 1 4 2 1 0 0 0 0 0
	0.01506836	2 4 4 0 0 0 0 0 2 3 1 1 1 0 0 0 0
	0.01228703	2 4 4 0 0 0 0 0 2 3 2 0 1 0 0 0 0
	0.04006584	2 4 4 0 0 0 0 0 2 3 2 1 0 0 0 0 0
	0.05409302	2 4 4 0 0 0 0 0 2 3 3 0 0 0 0 0 0
	OC 1.985844	3.982180 2.752972 0.647044 0.626558 0.003326
	OC 0.000793	0.000767 0.000516
	OC 1.497768	3.541019 1.883927 0.638461 0.437415 0.000590 Σ
	OC 0.000145	0.000631 0.000044

	Finals	spectra		
²² N	e	²² M	lg	
Ex	\mathbf{J}^{π}	Ex	Jπ	
0	0^{+}	0	0+	
1,275	2^{+}	1,247	2+	
3,358	4+	3,308	4+	
4,456	2+	4,402	2+	
5,146	2-	5,006	2-	
5,332	1+	5,318	1+	
5,363	2+	5,035	2+	
5,524	4+	5,293	4+	
5,641	3+	5,452	3+	
5,910	3-	5,838	3-	
6,120	2+	5,711	2+	
6,234	0^{+}	5,962	0+	
6,234	0-	6,046	0-	
6,310	6+	6,254	6+	
6,347	4+	6,247	4+	
6,347	4+	6,247	4+	
6,310	Q ₊	6,254	Q+	
6,234				
6,234	0+	5,962	0+	

Conclusion

- ^{22}Mg structure is of nuclear astrophysical interest, especially their J^{π} assignements
- Experimentally, the ²²Mg spectrum is not so well known as the one of ²²Ne
- A comparison with the well studied mirror nucleus ²²Ne is important as well as with shell model using our 0 and 1 ħω PSDPF interaction
- This comparison leads to the proposed existence of a 0state in the two mirror nuclei and to a one to one level correspondence of ²²Ne and ²²Mg between 0 and ~6.35 MeV of excitation

Finally, we propose a complete spectrum of ²²Mg up to ~ 6.35 MeV

