Small droplets made of ³He and ⁴He atoms

J. Navarro IFIC (CSIC & Universidad de Valencia)

"Spin-offs" of the Strasbourg-Madrid Shell-Model collaboration

 M. Barranco, J.N., A. Poves: Structure and stability of ³He droplets, Phys. Rev. Lett. **78**, 4729 (1997)
 J. N., A. Poves, M. Barranco, M. Pi: Shell structure in mixed ³He-⁴He droplets, Phys. Rev. A **69**, 023202 (2004)
 S. Fantoni, R. Guardiola, J. N., A. Zuke**r**: The spectra of mixed ³He-⁴He droplets, J. Chem. Phys. **123**, 054503 (2005)

Helium is the only substance that remains liquid down to T=0

- Large zero-point motion
- Weak atom-atom attraction

Superfluid phase transition ${}^{4}\text{He}\ T_{\lambda} = 2.2\ \text{K}$ ${}^{3}\text{He}\ T_{\lambda} = 3\ \text{mK}$

1960's: is it possible to observe superfluidity in finite systems?

Size distribution in the jet: log-normal distribution Typical average size: a few thousand atoms

Detection of small droplets (up to \approx 40 amu)

Atoms in the beam have a sharp velocity $\Delta v/v \approx 2\%$

(W. Schöllkopf, J.P. Toennies, Science 266, 1345, 1994)

De Broglie wavelength λ=h/(Nmv) Typical value 0.1/N Å

He-He interaction

1K ≈ 0.9 meV, 1Å =10⁵ fm

Lowest excited state $\approx 20 \text{ eV} \approx 2.3 \text{ } 10^5 \text{ K}$

Structureless - bosons (⁴He) - fermions (³He) Calculating dimers: ⁴He₂ ≈ 1.3 mK ³He₂ unbound ³He ⁴He unbound

```
Diffraction experiment <sup>4</sup>He<sub>2</sub>
bond length
52 ± 4Å
binding energy
1.1+0.3-0.2 mK
```

Nuclear matter E/N = -16 MeV Deuteron E/N = -1 MeV 4 He liquidE/N = -7.5 K $4 He_2 dimer$ E/N = -0.6 mK

³He liquid E/N= -2.5 K ³He₂ dimer unbound

Minimum number of ³He atoms to form a self-bound system

Theoretical methods to study Helium droplets ⁴He_{N4} // ³He_{N3} // ⁴He_{N4}-³He_{N3}

- Density functional theory Phenomenological interaction $E = \int dV \,\varepsilon(\rho_4, \rho_3)$
- Monte Carlo simulations Microscopic He-He interaction

Shell model techniques to describe certain properties of fermionic (³He) components

<u>1. - Minimum number of ³He atoms</u> to form a bound droplet

Density functional magic numbers: (p+1)(p+2)(p+3)/3

However: Uncertainties in DF + Pronounced minimum in E_{corr} Safe estimate: $N_{min} = 30$

N₃=20 Unbound

N₃=40 Bound

TABLE II. Matrix elements $\langle l_1, l_2(L) | V | l_3, l_4(L) \rangle$ (K) for N =30 and 40 drops.

so and to drops.				Diagonal M E
l_1, l_2, l_3, l_4	LS	N = 30	N = 40	Diagonal M.L.
3, 3, 3, 3	00	0.724	0.896	0-10-2
	11	-0.247	-0.228	0-0, L-0
	20	-0.019	-0.010	- repulsive
	31	-0.210	-0.235	
	40	0.015	0.024	S=1 L odd
	51	-0.203	-0.239	
	60	0.010	-0.003	- attractive
1, 1, 1, 1	00	0.307	0.506	
	11	-0.137	-0.155	S=0. L even
	20	-0.018	0.081	
3, 1, 3, 1	20	-0.024	-0.012	very sman
	21	-0.237	-0.264	
	30	-0.197	-0.245	ſ
	31	-0.188	-0.264	$d\mathbf{r}' o(\mathbf{r}') V(\mathbf{r})$
	40	-0.005	-0.053	
	41	-0.235	-0.287	J

Maximum spin in the open shell: below mid-shell: np/2 above midshell: $n_h/2$

0, L=0 oulsive =1, L odd ractive =0, L even >0 ery small

$$\int \mathrm{d}\mathbf{r}' \rho(\mathbf{r}') V(\mathbf{r} - \mathbf{r}')$$

Zero range : $V(\mathbf{r}) = t_0 \delta(\mathbf{r})$ Spin alignement

Finite range : due to short- $V(\mathbf{r}) = 0, r < h$

range repulsion

 $= V_{\mathrm{He-He}}(\mathbf{r}), r > h$

2. - Mixed ³He-⁴He droplets: density functional

⁴He atoms: extra binding for ³He atoms

Configuration interaction (1g-1h shells)

TABLE I. Antisymmetrized two-body matrix elements $\langle l_i, l_j; L, S | V | l_m, l_n; LS \rangle$ in mK for the (50,300) droplet.

l_i	l_j	l_m	l_n	L	0=2	L	S=1
4	4	4	4	0	+83	1	-67
				2	+11	3	-26
				4	+6	5	-16
				6	+1	7	-10
				8	-11		
4	5	4	5	1	+111	1	-81
				2	-17	2	-80
				3	+30	3	-8
				4	-3	4	-47
				5	+15	5	-2
				6	$^{-1}$	6	-32
				7	+5	7	$^{-1}$
				8	0	8	-23
				9	-21	9	-2
5	5	5	5	0	+142	1	-93
				2	+18	3	-38
				4	+12	5	-24
				6	+7	7	-18
				8	+3	9	-13
				10	-11		

Analogous to the case of pure ³He droplets

³He atoms in the open shell couple to maximum spin

3. - Mixed ³He-⁴He droplets: diffusion Monte Carlo

Solve the Schrödinger equation in imaginary time $f(\mathcal{R}, t) = \Psi_T(\mathcal{R})\Psi(\mathcal{R}, t)$ $f(\mathcal{R}, t + \Delta t) = \int d\mathcal{R}' G(\mathcal{R}, \mathcal{R}', \Delta t) f(\mathcal{R}', t)$

 $\Psi_T(\mathcal{R}) = \Psi_{BB} \Psi_{BF} \Psi_{FF} D_F \qquad \Psi_{MN} = \Pi_{i \neq j} e^{f(r_{ij})}$

Slater determinant $r^{\ell}Y_{\ell,m}$ Levels: 1s², 1p⁶, 1d¹⁰, 1f¹⁴, ... Consider levels: S_{max}, L_{max}

Other Technicalities: Fixed-node approximation "Backflow" correlations $\mathbf{r}_i \rightarrow \mathbf{r}_i + \sum_{j \neq i} \eta(r_{ij})(\mathbf{r}_j - \mathbf{r}_i)$ (to improve nodal surfaces)

DMC energies (in K)

N _F	Configuration	L	S	$N_B=8$	$N_B = 20$
0		0	0	5.14(0)	33.76(1)
1	1 <i>s</i> ¹	0	1/2	6.08(0)	35.55(1)
2	1 <i>s</i> ²	0	0	7.09(0)	37.32(1)
3	$1p^1$	1	1/2	7.72(0)	38.88(1)
4	$1p^{2}$	1	1	8.44(1)	40.47(2)
		2	0	8.40(1)	40.44(2)
5	$1p^{3}$	0	3/2	9.25(1)	42.14(1)
		2	1/2	9.20(1)	42.08(2)
6	$1p^4$	1	1	10.09(1)	43.72(3)
		2	0	10.04(1)	43.71(2)
7	1p ⁵	1	1/2	11.00(1)	45.40(2)
8	$1p^{6}$	0	0	12.00(1)	47.07(2)
9	$1d^1$	2	1/2	12.49(1)	48.37(2)
10	$1d^2$	3	1	13.02(1)	49.62(2)
		4	0	12.97(1)	49.64(4)
11	$1d^3$	3	3/2	13.65(1)	51.03(4)
		5	1/2	13.56(1)	51.01(3)
12	$1d^4$	2	2	14.42(1)	52.46(5)
		6	0	14.19(1)	52.23(4)
13	$1d^5$	0	5/2	15.26(2)	53.99(2)
		6	1/2	14.96(2)	53.71(3)
14	$1d^6$	2	2	16.01(1)	55.37(4)
		6	0	15.74(2)	55.19(4)
15	$1d^{7}$	3	3/2	16.77(2)	56.83(3)
		5	1/2	16.64(1)	56.70(5)
16	$1d^8$	3	1	17.63(2)	58.34(4)
		4	0	17.62(2)	58.29(4)
17	$1d^9$	2	1/2	18.64(3)	59.94(3)
18	1d ¹⁰	0	0	19.74(3)	61.56(5)

³He separation energies E(N_B,N_F-1)-E(N_B,N_F)

Smax

Lmax

An effective monopole Hamiltonian analysis

$$\begin{split} U &= \sum_{s} n_{s} \varepsilon_{s} \qquad V_{rs;tu}^{LS} = \langle rs; LS | V | tu; LS \rangle \\ \text{Hamiltonian: H=H_{mS} + H_{M}} \qquad \begin{array}{l} \text{H}_{ms} \text{ gives the average energy} \\ \text{of configurations at fixed number of particles and spin} \\ V_{rs}^{S} &= \frac{\sum_{L} V_{rs;rs}^{LS} (2L+1) [1+(-)^{L+S} \delta_{rs}]}{\sum_{L} (2L+1) [1+(-)^{L+S} \delta_{rs}]} \\ a_{rs} &= \frac{1}{4} (3V_{rs}^{1} + V_{rs}^{0}), b_{rs} = V_{rs}^{1} - V_{rs}^{0} \\ H_{mS} &= U + \sum_{r \leq s} \frac{1}{1+\delta_{rs}} \left[a_{rs} n_{rs} (n_{rs} - \delta_{rs}) + b_{rs} \left(\mathbf{S}_{r} \cdot \mathbf{S}_{s} - \frac{3n_{r}}{4} \delta_{rs} \right) \right] \\ V_{rs} &= a_{rs} - \frac{3}{4} \frac{\delta_{rs}}{D_{r} - 1} b_{rs}, D_{r} = 2(2\ell_{r} + 1) \\ H_{mS} &= U + \sum_{r \leq s} \frac{1}{1+\delta_{rs}} V_{rs} n_{rs} (n_{rs} - \delta_{rs}) + b \left[S(S+1) - \sum_{r} \frac{3n_{r}(D_{r} - n_{r})}{4(D_{r} - 1)} \right] \\ \end{array}$$

V_{ss} , V_{pp} , V_{dd} , $(V_{sp}+3V_{sd})/4$, V_{pd} Same + b

Simple interpretation of DMC energies in terms of H_{mS}

Helium droplets

- Interesting (interdisciplinary) many-body problem
- Structureless bosons and fermions, same interaction
- Effects related to different statistics and different masses

As compared with nuclei:

- Only central interaction
- Very correlated system (but a DFT works very well)

Shell model calculations:

- Stability threshold: 30 ³He atoms
- ³He atoms in the open shells coupled to maximum spin
- ³He atoms in ³He-⁴He droplets: 1s², 1p⁶, 1d¹⁰, 1f¹⁴, ...
- DMC results nicely interpreted in terms of monopolar Hamiltonian