Single-particle states around ¹³²Sn by realistic shell-model calculations

Angela Gargano, INFN Napoli

INFN

Shell Model as a Unfied View of Nucler Structure

Workshop in honor of founders of Strasbourg-Madrid Shell Model Collaboration: E. Caurier, A. Poves and A. P. Zuker

Strasbourg, October 8-10, 2012

Evolution of the single-neutron states in the N=82-126 shell

	N=83				
Ζ	50	52	54		

Evolution of the single-proton states in the Z=50-82 shell

	Z=51				
Ν	82	84	86		

- Theoretical framework
- Physics case:
 - Motivation
 - Discussion of the results and comparison with experiment
- Conclusions

$$H = \sum_{i} \varepsilon_{i} a_{i}^{\dagger} a_{i} + \frac{1}{4} \sum_{ijkl} \langle ij | V_{eff} | kl \rangle a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k}$$

defined within a reduced model space and acting only between valence nucleons

$$H = \sum_{i} \varepsilon_{i} a_{i}^{\dagger} a_{i} + \frac{1}{4} \sum_{ijkl} \langle ij | V_{eff} | kl \rangle a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k}$$

defined within a reduced model space and acting only between valence nucleons

has to take into account *in an effective way* all the degrees of freedom not explicitly considered:

- configurations beyond the chosen model space
- core polarization effects

$$H = \sum_{i} \varepsilon_{i} a_{i}^{\dagger} a_{i} + \frac{1}{4} \sum_{ijkl} \langle ij | V_{eff} | kl \rangle a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k}$$

defined within a reduced model space and acting only between valence nucleons

has to take into account *in an effective way* all the degrees of freedom not explicitly considered:

- configurations beyond the chosen model space
- core polarization effects

$$H = \sum_{i} \varepsilon_{i} a_{i}^{\dagger} a_{i} + \frac{1}{4} \sum_{ijkl} \langle ij | V_{eff} | kl \rangle a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k}$$

defined within a reduced model space and acting only between valence nucleons

has to take into account *in an effective way* all the degrees of freedom not explicitly considered:

- configurations beyond the chosen model space
- core polarization effects

Realistic shell-model Hamiltonian

$$V_{NN} + (V_{NNN}) \Rightarrow$$
 many body theory $\Rightarrow H_{eff}$

Realistic shell-model Hamiltonian

 Understand the properties of nuclei starting from the forces between nucleons

No adjustable parameters

Two main ingredients

Nucleon-Nucleon potential

Many-body perturbative theory

L. Coraggio et al, Prog. Part. Nucl. Phys. 62, 135 (2009) L. Coraggio et al, Annals of Phys. 327, 2061 (2012)

INFN A. Gargano Sezione di Napoli

Nucleon-nucleon potential

Potentials which reproduce the two-body experimental data (deuteron properties and the NN scattering data up the inelastic threshold) with $\chi^2/N_{data} \sim 1$

Nucleon-nucleon potential

Potentials which reproduce the two-body experimental data (deuteron properties and the NN scattering data up the inelastic threshold) with $\chi^2/N_{data} \sim 1$

- Nijmegen II
- CD-Bonn
- Argonne V₁₈
- Chiral potentials

these potentials have a strongly repulsive short-range component cannot be used directly in nucler structure perturbative calculations

Problem:

Realistic shell-model calculation

Schrödinger equation for A nucleons

$$H\psi_i = (H_0 + H_1)\psi_i = E_i\psi_i$$

$$H_{0} = T + U$$
$$H_{1} = V_{NN} - U$$

Realistic shell-model calculation

Schrödinger equation for A nucleons

$$H\psi_i = (H_0 + H_1)\psi_i = E_i\psi_i$$

$$H_{0} = T + U$$
$$H_{1} = V_{NN} - U$$

Shell-model equation for N-valence nucleons

$$PH_{eff}P\psi_{i} = P(H_{0} + V_{eff})P\psi_{i} = E_{i}P\psi_{i}$$

P - projection operator onto the chosen model space defined in terms of H₀ eigenvectors

INFN A. Gargano Sezione di Napoli

 $\blacklozenge V_{eff}$ is written as recursive equation in terms of the ${\bf \hat{Q}}$ - box and its derivatives

$$\widehat{Q} = PH_1P + PH_1Q \frac{1}{\varepsilon - QHQ}QH_1P$$

$$Q=1-P$$
 $\varepsilon = \text{unperturbed energy for a degenerate model space} PH_0P =$
• V_{eff} solved by iterative techniques (Krenciglowa-Kuo, Lee-Suzuki)

INFN A. Gargano Sezione di Napoli

Diagrammatic expansion of the $\hat{\mathbf{Q}}$ - box

Diagrammatic expansion of the $\hat{\mathbf{Q}}$ - box

Calculation:

- inclusion of diagrams up to finite order in the interaction
- truncation of the intermediate-state summation

Remarks on the calculation of V_{eff}

Remarks on the calculation of $V_{\rm eff}$

 ♦ V_{eff} is constructed for a two-valence-particle nucleus and used for more complex systems → three- or higher-body forces arising for these systems (even if the origin potential contains only two-body terms) are not taken into account

Remarks on the calculation of V_{eff}

 ♦ V_{eff} is constructed for a two-valence-particle nucleus and used for more complex systems → three- or higher-body forces arising for these systems (even if the origin potential contains only two-body terms) are not taken into account

•
$$V_{eff} = V_{eff}^{(1)} + V_{eff}^{(2)}$$
 • two-body component
of the shell-model Hamiltoniam
 $H_0 + V_{eff}^{(1)}$ • single-particle energies

¹³²Sn core

<u>Valence proton orbits:</u> 0g7/2, 1d5/2, 1d3/2, 0h11/2, 2s1/2

Valence neutron orbits: 1f7/2, 2p3/2, 0h9/2, 2p1/2, 1f5/2, 0i13/2

V_{NN} CD Bonn potential V_{low-k} with Λ =2.2 fm⁻¹ + Coulomb force for protons

Q-box at second order

U harmonic oscillator with $\hbar \omega = 7.88$ MeV intermediate hole states – all intermediate particles states - 5 shell above the Fermi Surface

FN A. Gargano Sezione di Napoli

Proton and neutron single-particle energies (in MeV)

	¹³³ Sb		¹³³ Sn	
$\pi(n, l, j)$	ε	$\nu(n,l,j)$	ε	
$0g_{7/2}$	0.00	$1f_{7/2}$	0.00	
$1d_{5/2}$	0.962	$2p_{3/2}$	0.854	
$2d_{3/2}$	2.440	$2p_{1/2}$	1.363	
$0h_{11/2}$	2.792	$0h_{9/2}$	1.561	
$2s_{1/2}$	2.800	$1f_{5/2}$	2.005	
		$0i_{13/2}$	2.690	
$\pi 2s_{1/2}$ from the expt energy of the 1/2 ⁺ at 2.15 MeV in ¹³⁷ Cs v0i _{13/2} from the expt energy of the 10 ⁺ state at 2.43 MeV in ¹³⁴ Sb				
A. Gargano Sezione di Napoli Sezione di Napoli Sezione di Napoli				

Motivation for our study

• one-particle spectroscopic factors

Motivation for our study

• one-particle spectroscopic factors

1. Spectroscopic factors are becoming available from transfer reactions in this region

One-particle transfer reactions are an ideal tool to investigate single-particle excitations

Until 1970-s considerable effort to map out the single-paticle structure of *stable* nuclei Now possibility of extending transfer reaction studies to *exotic* nuclei through experiments in inverse kinematics

Motivation for our study

- one-particle spectroscopic factors
- **1.** Spectroscopic factors are becoming available from transfer reactions in this region

One-particle transfer reactions are an ideal tool to investigate single-particle excitations

Until 1970-s considerable effort to map out the single-paticle structure of *stable* nuclei Now possibility of extending transfer reaction studies to *exotic* nuclei through experiments in inverse kinematics

2. Evolution of the single-neutron and single-proton states

- Survival of the SP character when adding nucleon pairs
- Dependence on the nature of the added particles

test of pp, nn, pn interaction

nature

The magic nature of ¹³²Sn explored through the single-particle states of ¹³³Sn

K. L. Jones^{1,2}, A. S. Adekola³, D. W. Bardayan⁴, J. C. Blackmon⁴, K. Y. Chae¹, K. A. Chipps⁵, J. A. Cizewski², L. Erikson⁵, C. Harlin⁶, R. Hatarik², R. Kapler¹, R. L. Kozub⁷, J. F. Liang⁴, R. Livesay⁵, Z. Ma¹, B. H. Moazen¹, C. D. Nesaraja⁴, F. M. Nunes⁸, S. D. Pain², N. P. Patterson⁶, D. Shapira⁴, J. F. Shriner Jr⁷, M. S. Smith⁴, T. P. Swan^{2,6} & J. S. Thomas⁶

nature

Vol 465/27 May/doi:10.1038/nature09048

The magic nature of ¹³²Sn explored through the single-particle states of ¹³³Sn

PHYSICAL REVIEWC 84, 024325 (2011)

Single-neutron energies outside ¹³⁶Xe

B. P. Kay,^{1,*} J. P. Schiffer,¹ S. J. Freeman,² C. R. Hoffman,¹ B. B. Back,¹ S. I. Baker,¹ S. Bedoor,³ T. Bloxham,⁴ J. A. Clark,¹ C. M. Deibel,^{1,5} A. M. Howard,² J. C. Lighthall,^{1,3} S. T. Marley,^{1,3} K. E. Rehm,¹ D. K. Sharp,² D. V. Shetty,³ J. S. Thomas,² and A. H. Wuosmaa³
¹Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
²School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
³Physics Department, Western Michigan University, Kalamazoo, Michigan 49008, USA
⁴Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
⁵Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, Michigan 48824, USA

(Received 4 July 2011; published 29 August 2011)

The single-neutron properties of the N = 83 nucleus ¹³⁷Xe have been studied using the ¹³⁶Xe(*d*,*p*) reaction in inverse kinematics at a beam energy of 10 MeV/u. The helical-orbit spectrometer, HELIOS, at Argonne National Laboratory was used to analyze the outgoing protons, achieving an excitation-energy resolution of ~100 keV. Extraction of absolute cross sections, angular distributions, and spectroscopic factors has led to a more complete understanding of the single-neutron strength in ¹³⁷Xe. In particular, the centroids of the $\nu h_{9/2}$ and $\nu i_{13/2}$ strengths appear to evolve through the N = 83 isotones in a manner consistent with the action of the tensor force.

PHYSICAL REVIEWC 84, 024325 (2011)

Single-neutron energies outside ¹³⁶Xe

136 Xe(d,p) and 136 Xe(d,t) Reactions*

P. A. MOORE[†] AND P. J. RILEY[†] University of Texas, Austin, Texas 78712

AND

C. M. JONES AND M. D. MANCUSI[‡] Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

AND

J. L. FOSTER, JR. University of Pittsburgh, Pittsburgh, Pennsylvania 15213 (Received 8 July 1968)

States of ¹³⁷Xe and ¹³⁵Xe have been investigated via the ¹³⁶Xe(d,p) and ¹³⁶Xe(d,t) reactions with 13-MeV incident deuterons and an over-all energy resolution of 45 keV. Q values of 1.637 ± 0.020 and -1.723 ± 0.020 MeV have been obtained for the respective ground state ¹³⁶Xe(d,p)¹³⁷Xe and ¹³⁶Xe(d,t)¹³⁵Xe reactions.

20 NOVEMBER 1968

136 Xe(d,p) and 136 Xe(d,t) Reactions*

P. A. MOORE[†] AND P. J. RILEY[†] University of Texas, Austin, Texas 78712

AND

C. M. JONES AND M. D. MANCUSI[‡] Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

AND

J. L. FOSTER, JR. University of Pittsburgh, Pittsburgh, Pennsylvania 15213 (Received 8 July 1968)

States of ¹³⁷Xe and ¹³⁵Xe have been investigated via the ¹³⁶Xe(d,p) and ¹³⁶Xe(d,t) reactions with 13-MeV incident deuterons and an over-all energy resolution of 45 keV. Q values of 1.637 ± 0.020 and -1.723 ± 0.020 MeV have been obtained for the respective ground state ¹³⁶Xe(d,p)¹³⁷Xe and ¹³⁶Xe(d,t)¹³⁵Xe reactions.

Z. Phys. A – Hadrons and Nuclei 340, 339–340 (1991)

Short note

Investigation of the (d, p)-reaction on $^{136, 132}$ Xe in inverse kinematics *

G. Kraus¹, P. Egelhof¹, H. Emling¹, E. Grosse¹, W. Henning¹, R. Holzmann¹, H.J. Körner², J.V. Kratz³, R. Kulessa⁴, Ch. Schießl², J.P. Schiffer⁵, W. Wagner², W. Walus⁴, and H.J. Wollersheim¹

The one-neutron transfer reactions $d(^{132,136}Xe, p)^{133,137}Xe$ have been investigated in inverse kinematics with xenon beams incident on deuterium loaded titanium targets. The angular distributions of the protons, measured with a detector array of 100 PIN-photodiodes, have been analyzed using standard DWBA. Generally, good agreement is obtained with results previously obtained in reactions induced by light-ion beams.

Shell Model as a Unfied View of Nucler Structure IPHC - Strasbourg, October 8-10, 2012

© Springer-Verlag 1991

20 NOVEMBER 1968

Zeitschrift für Physik A Hadrons

and Nuclei

© Springer-Verlag 1991

136 Xe(d,p) and 136 Xe(d,t) Reactions*

P. A. MOORE[†] AND P. J. RILEY[†] University of Texas, Austin, Texas 78712

AND

C. M. JONES AND M. D. MANCUSI[‡] Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

AND

J. L. FOSTER, JR. University of Pittsburgh, Pittsburgh, Pennsylvania 15213 (Received 8 July 1968)

States of ¹³⁷Xe and ¹³⁵Xe have been investigated via the ¹³⁶Xe(d,p) and ¹³⁶Xe(d,t) reactions with 13-MeV incident deuterons and an over-all energy resolution of 45 keV. Q values of 1.637 ± 0.020 and -1.723 ± 0.020 MeV have been obtained for the respective ground state ¹³⁶Xe(d,p)¹³⁷Xe and ¹³⁶Xe(d,t)¹³⁵Xe reactions.

@ GSI

Z. Phys. A – Hadrons and Nuclei 340, 339–340 (1991)

Short note

G. Kraus¹, P. Egelhof¹, H. Emling¹, E. Grosse¹, W. Henning¹, R. Holzmann¹, H.J. Körner², J.V. Kratz³, R. Kulessa⁴, Ch. Schießl², J.P. Schiffer⁵, W. Wagner², W. Walus⁴, and H.J. Wollersheim¹

The one-neutron transfer reactions $d(^{132,136}Xe, p)^{133,137}Xe$ have been investigated in inverse kinematics with xenon beams incident on deuterium loaded titanium targets. The angular distributions of the protons, measured with a detector array of 100 PIN-photodiodes, have been analyzed using standard DWBA. Generally, good agreement is obtained with results previously obtained in reactions induced by light-ion beams.

The experimental results and the overall good agreement with existing light-ion induced data indicate, that the method of inverse kinematics - using heavy ion beams incident on light target nuclei - can be a useful tool for spectroscopic investigations in nuclear transfer reactions on nuclei far from stability. The quality of the data can be

Test of the two-body matrix elements

Diagonal matrix elements of interaction for the $(vf_{7/2})^2$ and $(\pi g_{7/2})^2$ configurations

A. Gargano Sezione di Napoli

Diagonal matrix elements of interaction for the $\pi g_{7/2} v f_{7/2}$ configuration

Sezione di Napoli

IPHC –Strasbourg, October 8-10, 2012

¹³⁷Xe

	Expt		Calc		
Jπ	E(MeV)	C ² S [1]	Jπ	E(MeV)	C ² S
7/2-	0.0	0.94	7/2-	0.0	0.86
3/2⁻	0.601	0.52	3/2⁻	0.728	0.57
1/2-,3/2-	0.986	0.35	1/2-	1.127	0.43
9/2-	1.218	0.43	9/2-	1.327	0.72
5/2 ⁻	1.303	0.22	5/2 ⁻	1.349	0.17
5/2 ⁻ ,7/2 ⁻	1.534	0.12	7/2-	1.589	0.05
			5/2 ⁻	1.666	0.04
9/2⁻	1.590	0.24	9/2-	1.584	0.01
			(5/2⁻) ₅	2.039 ^c	0.20
13/2+	1.751	0.84	13/2+	2.082	0.75

[1] B. P. Kay et al, PRC 84, 024325 (2011) uncertainties in expt SF \approx 25%

¹³⁷Xe

	Expt			Calc			
Jπ	E(MeV)	C ² S [1]	Jπ	E(MeV)	C ² S		
7/2-	0.0	0.94	7/2-	0.0	0.86		
3/2-	0.601	0.52	3/2⁻	0.728	0.57		
1/2-,3/2-	0.986	0.35	1/2-	1.127	0.43		
9/2 ⁻	1.218	0.43	9/2⁻	1.327	0.72		
5/2 ⁻	1.303	0.22	5/2⁻	1.349	0.17		
5/2 ⁻ ,7/2 ⁻	1.534	0.12	7/2-	1.589	0.05		
			5/2 ⁻	1.666	0.04		
9/2 ⁻	1.590	0.24	9/2 ⁻	1.584	0.01	Jπ	
			(5/2 ⁻) ₅	2.039 ^c	0.20	Г /Э-	
13/2+	1.751	0.84	13/2+	2.082	0.75	5/2	

[1] B. P. Kay et al, PRC 84, 024325 (2011) uncertainties in expt SF \approx 25%

¹³⁵Te

	Expt			Calc	
Jπ	E(MeV)	l transfer*	Jπ	E(MeV)	C ² S
7/2-	0.0*	3	7/2 ⁻	0.0	0.86
3/2⁻	0.659*	1	3/2⁻	0.726	0.63
1/2-	1.083*	1	1/2-	1.110	0.45
5/2 ⁻	1.127		5/2⁻	1.119	0.12
9/2 ⁻	1.246		9/2⁻	1.302	0.18
			7/2⁻	1.336	
7/2 ⁻ ,9/2 ⁻	1.380		9/2 ⁻	1.346	0.51
			3/2⁻	1.721	0.27
3/2 ⁻ ,5/2 ⁻	1.837*	-	1/2-	1.947	0.32
			(5/2⁻) ₆	2.238	0.41
13/2+	2.109		13/2+	2.268	0.72

* preliminary ¹³⁴Te(d,p) experiment by J.A. Cizewski et al, AIP Conf. Proc. 1090, 463(2009)

¹³⁵Te

	Expt			Calc					
Jπ	E(MeV)	l transfer*	Jπ	E(MeV)	C ² S				
7/2-	0.0*	3	7/2 ⁻	0.0	0.86				
3/2⁻	0.659*	1	3/2⁻	0.726	0.63				
1/2-	1.083*	1	1/2-	1.110	0.45				
5/2⁻	1.127		5 / 2⁻	1.119	0.12				
9/2 ⁻	1.246		9/2⁻	1.302	0.18				
			7/2⁻	1.336		3/	12-	5	/2-
7/2 ⁻ ,9/2 ⁻	1.380		9/2 ⁻	1.346	0.51	E(MeV)	C ² S	E(MeV)	C ² S
			3/2-	1.721	0.27	1.81	0.00	1.71	0.00
3/2-,5/2-	1.837*	-	1/2-	1.947	0.32			1.82	0.06
			(5/2⁻) ₆	2.238	0.41			2.01	0.06
13/2+	2.109		13/2+	2.268	0.72				

* preliminary ¹³⁴Te(d,p) experiment by J.A. Cizewski et al, AIP Conf. Proc. 1090, 463(2009)

States with the largest single-neutron strength

INFN A. Gargano Sezione di Napoli

¹³⁵Sb

137 S	0
--------------	---

Expt		Calc			
Jπ	E(MeV)	Jπ	E(MeV)	C ² S	
7/2+	0.0	7/2+	0.0	0.74	
5/2+	0.282	5/2+	0.387	0.42	
3/2+	0.440	3/2+	0.497	0.07	
1/2+	0.523	1/2+	0.659	0.07	
		(5/2 ⁺) ₂	0.928	0.23	
		(3/2 ⁺) ₁₂	2.600	0.32	
		(1/2 ⁺) ₁₂	3.199	0.32	
		11/2-	2.652	0.52	
		(11/2 ⁻) ₅	3.522	0.21	

Calc					
Jπ	E(MeV)	C ² S			
7/2+	0.0	0.71			
5/2+	0.186	0.56			
3/2+	0.333	0.12			
1/2+	0.403	0.11			
11/2-	2.587	0.38			

yrast states & states with C²S >0.2

¹³⁵Sb

¹³⁷ Sb	
-------------------	--

Expt		Calc			
Jπ	E(MeV)	Jπ	E(MeV)	C ² S	
7/2+	0.0	7/2+	0.0	0.74	
5/2+	0.282	5/2+	0.387	0.42	
3/2+	0.440	3/2+	0.497	0.07	
1/2+	0.523	1/2+	0.659	0.07	
		(5/2 ⁺) ₂	0.928	0.23	
		(3/2 ⁺) ₁₂	2.600	0.32	
		(1/2 ⁺) ₁₂	3.199	0.32	
		11/2 ⁻	2.652	0.52	
		(11/2 ⁻) ₅	3.522	0.21	

Calc				
Jπ	E(MeV)	C ² S		
7/2+	0.0	0.71		
5/2+	0.186	0.56		
3/2+	0.333	0.12		
1/2+	0.403	0.11		
11/2-	2.587	0.38		

	Jπ		$\Sigma_{\rm i} { m C}^2 { m S}$
¹³⁵ Sb	1/2+	12	0.67
	3/2+	12	0.63
¹³⁷ Sb	1/2+	30	0.38
	3/2+	30	0.52

yrast states & states with C²S >0.2

States with the largest single-proton strength

More fragmentation of the single-particle strength in Sb isotopes than in N=83 isotones

due to the pairing force weaker for neutrons in the 82-126 shell than for protons in the Z=50-82 shell

More fragmentation of the single-particle strength in Sb isotopes than in N=83 isotones

due to the pairing force weaker for neutrons in the 82-126 shell than for protons in the Z=50-82 shell

Single-particle energies as the centroid of the single-particle strengths

$$\varepsilon_{j}^{c} = \sum_{f} C^{2} S_{fj} E_{fj}$$

 E_{fi} energies of the final states of the one-nucleon stripping reaction

J.B. French, E. Fermi School (1965) M. Baranger, NP A**149**, 225(1970)

Single-particle energies as the centroid of the single-particle strengths

$$\varepsilon_{j}^{c} = \sum_{f} C^{2} S_{fj} E_{fj}$$

 E_{fi} energies of the final states of the one-nucleon stripping reaction

J.B. French, E. Fermi School (1965) M. Baranger, NP A**149**,225(1970)

$$\overline{\varepsilon}_{j} = \varepsilon_{j} + \sum_{j'} V^{M}(jj')N_{j'}$$

J

V^M monopole interaction

number of nucleons in the orbit j

A. Umeya and K. Muto, PRC 74, 034330 (2006)

N;

$$\overline{\varepsilon}_{j_{v}} = \varepsilon_{j_{v}} + \sum_{j_{\pi}} V^{M}(j_{v}j_{\pi})N_{j_{\pi}}$$

 $= \varepsilon_{j_{v}} + \sum_{j_{\pi}} V^{M}(j_{v}j_{\pi})N_{j_{\pi}}$ $\overline{\mathcal{E}}_{j_v}$

IPHC – Strasbourg, October 8-10, 2012

A. Gargano

Sezione di Napoli

INFN

FIG. 2 (color). Intuitive picture of the tensor force acting two

[T. Otska et al, PRL 95, 232502 (2005)]

jv	V(πg7/2,jv)
f7/2	-0.18
f5/2	-0.11
p3/2	-0.11
p1/2	-0.09
h9/2	-0.20
i13/2	-0.33

$$\overline{\varepsilon}_{j_{\pi}} = \varepsilon_{j_{\pi}} + \sum_{j_{\nu}} V^{M}(j_{\pi}j_{\nu})N_{j_{\nu}}$$

$$\overline{\varepsilon}_{j_{\pi}} = \varepsilon_{j_{\pi}} + \sum_{j_{\nu}} V^{M}(j_{\pi}j_{\nu})N_{j_{\nu}}$$

PHYSICAL REVIEW C 86, 034314 (2012)

Nuclear shell evolution and in-medium NN interaction

N. A. Smirnova,¹ K. Heyde,² B. Bally,¹ F. Nowacki,³ and K. Sieja³

... global variation of the single-particle energy over a region of isotones (isotopes) is mainly due to the central part of the nucleon-nucleon interaction. On the other hand, the local variations (differences of single particle energies) in shell-gaps and in spin-orbit energy splitting are determined by the interplay of the central, vector, and tensor parts...

Conclusions

 Realistic shell model provides an appropriate tool for nuclear structure studies

Possibility to understand

the properties of nuclei in terms of the forces among nucleons
deficiencies and limits of the theory, because of the absence of free parameters

Comparison with available data in ¹³²Sn region evidences the reliability of our interaction matrix elements

•Open problems Role of genuine and effective three-body forces

L. Coraggio

A. Covello

A. G.

N. Itaco

- L. Coraggio
- A. Covello
- **A. G.**
- N. Itaco

Thanks for your attention

