
Towards predictive theory for 
the mid-mass region: Gorkov and 3NF 

C. Barbieri 

“Shell	
  Model	
  as	
  a	
  Unified	
  View	
  of	
  Nuclear	
  Structure”	
  
in	
  honour	
  of	
  E:enne	
  Caurier,	
  Alfredo	
  Poves	
  and	
  Andres	
  Zuker	
  	
  

Strasburg,	
  Oct.	
  8-­‐10,	
  2012	
  



D. Van Neck, M. Degroote 

Collaborators 
V. Somà 

W.H. Dickhoff, S. Waldecker 

M. Hjorth-Jensen 

A. Cipollone,  A. Rios 

P. Navratil 

T. Duguet 

A. Polls,   A. Carbone  U. Barcellona!



Towards a unified description of nuclei  

Open	
  issues	
  @	
  mid	
  masses	
  are:	
  
	
  

 	
  Need	
  of	
  good	
  nuclear	
  
Hamiltonians	
  (3N	
  forces	
  
mostly!)	
  

 	
  Structure	
  calcula=ons	
  
are	
  limited	
  to	
  closed-­‐shells	
  
or	
  A±1,	
  A±2	
  

 Ab-­‐Ini=o	
  link	
  between	
  
structure	
  and	
  reac=ons.	
   	
   	
  

	
   	
  	
  
(BUT	
  calcula=ons	
  are	
  GOOD!!!)	
  	
  

Green’s	
  func=ons	
  can	
  be	
  naturally	
  extended	
  to:	
  	
  	
  	
  	
  ScaPering	
  observable 	
  
	
   	
   	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
   	
   	
   	
   	
  	
  	
  	
  Open	
  shell	
  nuclei	
  #



neutron	
  
removal	


neutron	
  
addi.on	


sca1ering	


56Ni	


One-body Green’s function (or propagator) describes the motion of quasi- 
particles and holes: 
 
 
 
 
 …this contains all the structure information probed by nucleon transfer 
(spectral	
  func=on): 

Green’s functions in many-body theory 
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15]. The method has later been applied to atoms and
molecules [12, 16] and recently to 56Ni [17] and 48Ca [18].
The ab initio results of Ref. [18] are in good agreement
with (e, e′p) data for spectroscopic factors from Ref. [19]
and also show that the configuration space needed for the
incorporation of long-range (surface) correlations is much
larger than the space that can be utilized in large-scale
shell-model diagonalizations. In Ref. [20], the FRPA was
employed to calculate proton scattering on 16O and ob-
tain results for phase shifts and low-lying states in 17F.
However, the properties of the self-energy at larger scat-
tering energies which are now of great interest for the
developments of DOM potentials was not addressed. In
particular, one may expect to extract useful information
regarding the functional form of the DOM from a study
of the self-energy for a sequence of calcium isotopes. It
is the purpose of the present work to close this gap. We
have chosen in addition to 40Ca and 48Ca also to include
60Ca, since the latter isotope was studied with a DOM
extrapolation in Refs. [8, 9]. Some preliminary results of
these FRPA calculations for spectroscopic factors were
reported in Ref. [14] but the emphasis in the present work
is on the properties of the microscopically calculated self-
energies. The resulting analysis is intended to provide
a microscopic underpinning of the qualitative features of
empirical optical potentials. Additional information con-
cerning the degree and form of the non-locality of both
the real and imaginary parts of the self-energy will also
be addressed because it is of importance to assess the
current local implementations of the DOM method.
In Sec. II A we introduce some of the basic properties

for the analysis of the self-energy. The ingredients of the
FRPA calculation are presented in Sec. II C. The choice
of model space and realistic nucleon-nucleon (NN) inter-
action are discussed in Sec. III. We present our results
in Sec. IV and finally draw conclusions in Sec. V.

II. FORMALISM

In the Lehmann representation, the one-body Green’s
function is given by

gαβ(E) =
∑

n

〈ΨA
0 |cα|Ψ

A+1
n 〉〈ΨA+1

n |c†β|Ψ
A
0 〉

E − (EA+1
n − EA

0 ) + iη

+
∑

k

〈ΨA
0 |c

†
β|Ψ

A−1
k 〉〈ΨA−1

k |cα|ΨA
0 〉

E − (EA
0 − EA−1

k )− iη
, (1)

where α, β, ..., label a complete orthonormal basis set
and cα (c†β) are the corresponding second quantization
destruction (creation) operators. In these definitions,
|ΨA+1

n 〉, |ΨA−1
k 〉 are the eigenstates, and EA+1

n , EA−1
k

the eigenenergies of the (A ± 1)-nucleon isotope. The
structure of Eq. (1) is particularly useful for our pur-
poses. At positive energies, the residues of the first term,
〈ΨA+1

n |c†α|Ψ
A
0 〉, contain the scattering wave functions for

the elastic collision of a nucleon off the |ΨA
0 〉 ground state,

while at negative energies they give information on fi-
nal states of the nucleon capture process. Consequently,
the second term has poles below the Fermi energy (EF )
which carry information about the removal of a nucleon
and therefore clarify the structure of the target state |ΨA

0 〉
itself. Green’s function theory provides a natural frame-
work for describing physics both above and below the
Fermi surface in a consistent manner.
The propagator (1) can be obtained as a solution of

the Dyson equation,

gαβ(E) = g(0)αβ (E) +
∑

γδ

g(0)αγ (E)Σ%
γδ(E) gδβ(E) , (2)

in which g(0)(E) is the propagator for a free nucleon
(moving only with its kinetic energy). Σ%(E) is the irre-
ducible self-energy and represents the interaction of the
projectile (ejectile) with the target nucleus. Feshbach,
developed a formal microscopic theory for the optical po-
tential already in Ref. [21, 22] by projecting the many-
body Hamiltonian on the subspace of scattering states.
It has been proven that if Feshbach’s theory is extended
to a space including states both above and below the
Fermi surface, the resulting optical potential is exactly
the irreducible self-energy Σ%(E) [23] (see also Ref. [24]
and Ref. [25] for a shorter demonstration).
The above equivalence with the microscopic optical po-

tential is fundamental for the present study, since the
available knowledge from calculations based on Green’s
function theory can be used to suggest improvements of
optical models. In particular, in the DOM, the dispersion
relation obeyed by Σ%(E) is used to reduce the number of
parameters and to enforce the effects of causality. Thus
the DOM potentials can also be thought of as a repre-
sentation of the nucleon self-energy.

A. Self-Energy

For a J = 0 nucleus, all partial waves ($, j, τ) are
decoupled, where $,j label the orbital and total angu-
lar momentum and τ represents its isospin projection.
The irreducible self-energy in coordinate space (for ei-
ther a proton or a neutron) can be written in terms of
the harmonic-oscillator basis used in the FRPA calcula-
tion, as follows:

Σ%(x,x′;E) =
∑

&jmjτ

I&jmj
(Ω,σ)

×

[

∑

na,nb

Rna&(r)Σ
%
ab(E)Rnb&(r

′)

]

(I&jmj
(Ω′,σ′))∗, (3)

where x ≡ r,σ, τ . The spin variable is represented by
σ, n is the principal quantum number of the harmonic
oscillator, and a ≡ (na, $, j, τ) (note that for a J = 0 nu-
cleus the self-energy is independent ofmj). The standard
radial harmonic-oscillator function is denoted by Rn&(r),
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[CB,	
  M.Hjorth-­‐Jensen,	
  Pys.	
  Rev.	
  C79,	
  064313	
  (2009);	
  CB,	
  Phys.	
  Rev.	
  LeP.	
  103,	
  202502	
  (2009)]	
  

Sh
ab(ω) =

1

π
Im gab(ω)



One-hole spectral function from experiment 

Em [MeV]  

σred ≈ S(h) 

10-50 

 distribution of nucleons in momentum (pm) and energies (Em) 

Saclay data for 16O(e,e’p) 
[Nucl. Phys. A335, 35 (1980)]	




Dependence of Spect. Fact. from p-h gap 

N3LO	
  interac:on	
  +	
  monopole	
  corr.	
 [CB,	
  M.Hjorth-­‐Jensen,	
  Pys.Rev.C79,	
  064313	
  (2009)]	
  

νf7/2	
νp3/2	


r	
  ≡	
  p3/2,	
  p1/2,	
  f5/2	
  
f	
  ≡	
  f7/2	
  

N3LO	
  needs	
  a	
  monopole	
  
correc=on	
  to	
  fix	
  the	
  p-­‐h	
  gap:	
  
[A.P.Zuker	
  (2003), 	
  	
  
Phys.	
  Rev.	
  LeP.	
  90,	
  042502]	


kM	
  =	
  0.4-­‐0.7	
  MeV	


small	
  kM	
  ß	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  à	
  large	
  kM	


Experimental	
  Eph	
  	
  
is	
  found	
  for	
  kM	
  =0,57	
  

f7/2	
  

p3/2	
  
p1/2	
  

f5/2	
  

Ep-­‐h	
  
56Ni	
  



Correlations & model space (RPA and SM) 

0s 

0p 

1s-0d 

0f-1p 

…
.	
  

s-d-g 

…

pf	
  



Quenching of absolute spectroscopic factors	


Overall quenching of spectroscopic 
factors	
   is driven by: 
SRC      à  ~10% 
part-vibr. coupling à dominant 
“shell-model“    à in open shell 
	
  

[Phys.	
  Rev.	
  Le8.	
  103,	
  202520	
  (2009)]	
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MODEL	
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COUPLING	


1  SHORT RANGE 
CORRELATIONS	


57Ni 

55Ni 

3	
1	

2   +  3	


…with analogous conclusions for 48Ca	
  



BUT still need shell-model (configuration mixing) 
to understand low energy fragmentation ! 2
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w/o tensor force
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1/2    level of
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FIG. 1: (Color online) Evolution of 1/2+1 level of K isotopes
measured from 3/2+1 level. Experimental data (filled circles)
are compared with theoretical results including (solid line) or
excluding (dashed line) the cross-shell tensor force.

Note that none of the cross-shell monopole interactions
are fitted directly to experiment, in contrast to other re-
cent interactions [26, 27].
We first study proton single-particle states of odd-A

K (Z=19) isotopes. Figure 1 exhibits 1/2+1 levels for
N=20∼28. If valence neutrons occupy the lowest possi-
ble orbits (filling configuration), the 1/2+1 level relative
to 3/2+1 corresponds to the 0d3/2-1s1/2 gap. Since this
is the case with N = 20 and is almost so with N = 28,
the lowering of the 1/2+1 level from N = 20 to 28 re-
flects considerable reduction of this gap. Experimentally
observed reduction (∼3 MeV) is reproduced remarkably
well by SDPF-MU Hamiltonian. This reduction is due
to the proton-neutron monopole interaction V pn

0f7/2,0d3/2

that is more attractive than V pn
0f7/2,1s1/2

: the difference is

0.44 MeV (at A = 42), out of which the tensor and the
central forces contribute, respectively, by 0.21 MeV and
0.22 MeV. The central force yields a stronger attraction
between 0f7/2 and 0d3/2 because of the similarity of their
radial wave functions [3].
We move on to the splitting between the 0d3/2 and

0d5/2 single-particle energies. The 0d5/2 single-particle
strength is highly fragmented due to its large excitation
energy (6-7 MeV). Spectroscopic factors of the proton sd-
shell orbits have been measured for 48Ca by one-proton
removal through (e, e′p) reaction [8]. The left panel of
Fig. 2 displays the experimental values in comparison
to those obtained by the present calculation, where the
usual overall quenching factor 0.7 is used [28]. The agree-
ment is excellent both in positions of peaks and their
magnitudes. However, this agreement is lost, if the ten-
sor force is removed from the cross-shell interaction, as
shown in the right panel of Fig. 2. For instance, the high-
est 0d3/2 peak is shifted in the wrong direction, and the
main peak of 0d5/2 moves away towards higher energy.
In the present calculation, as already stated, the ESPEs
around 40Ca are consistent with experiments with a rea-
sonably large 0d3/2-0d5/2 gap ∼7 MeV. The proton shell
structure evolves from 40Ca to 48Ca, giving rise to the
agreement with the fragmentation of spectroscopic fac-
tors. In particular, because only the tensor force can

0
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2

C2 S

0 5
E
x

(MeV)
0 5

1
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Exp. Exp.

Calc. with 
tensor force

Calc. without 
tensor force

s 1/2
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d5/2

d3/2
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d3/2

s 1/2

s 1/2

s 1/2d5/2

d5/2

d5/2

FIG. 2: (Color online) Spectroscopic factors of proton hole
states measured by 48Ca(e,e’p) [8] (upper) and its theoret-
ical calculation (lower left). The cross-shell tensor force is
removed in lower right panel. The black, blue and red bars
correspond to 1s1/2, 0d3/2 and 1d5/2 states, respectively.

m=   5/2_+ m=   3/2_+ m=   1/2_+

d
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1/2

gap

d         cosθ
5/2

s         sinθ    
1/2

q= −2.22 q= 0.44 q= 1.77 cos θ + 4.86 cosθ sinθ

q (mix) = 2.43

m=   5/2_+ m=   3/2_+ m=   1/2_+

2

closed shell

 oblate deformation

(a) large gap (no tensor effect)

(b) small or no gap (strong tensor effect)

FIG. 3: (Color online) Intuitive illustration of the struc-
ture of intrinsic state at Z=14. q implies intrinsic quadrupole
moment (fm2).

change the 0d3/2-0d5/2 gap to this order of magnitude
(by ∼2 MeV), the agreement shown in Fig. 2 provides
us with the first evidence from electron scattering exper-
iments to the tensor-force-driven shell evolution [2].

We now consider shape transitions driven by shell evo-
lution, by taking as an example the exotic Si (Z=14)
isotopes with even N=22∼28. In a conventional view,
Z=14 is a (sub-)magic number with a large 1s1/2-0d5/2

Y. Utsuno et al., arXiv:1201.4077v1 [nucl-th]	
  

Proton ‘holes’ in 48Ca 
 (≡48Ca(e,e’p)47K)	
  



Calculating the spectral function: 
 

FRPA, ADC(3), and the like… 



Phys.Rev.C63,  
     034313 (2001) 
Phys.Rev.C65, 
    064313 (2002) 
Phys.Rev.A76, 
  　052503 (2007) 

“Extended”	
  
Hartree	
  Fock	
  

 ≥	
  2p1h/2h1p	
  configura=ons	
  	
  

Faddeev-RPA in two words… 
Faddeev-RPA:	
Self-energy  

(optical potential):	


•  A complete expansion requires all types of particle-vibration coupling: 
     gII(ω)  pairing effects, two-nucleon transfer 
  Π(ph)(ω)  collective motion, using RPA or beyond 
  Pauli exchange effects 
 

•  The Self-energy Σ(ω)　yields both single-particle states and scattering 
 

•  Finite nuclei: require high-performance computing 

R(2p1h) Σ(ω) = R(2h1p) 

≡	
  	
  
	
  par;cle	
  

≡	
  hole	
  



Dyson equation 
✺ Propagators solves the Dyson equations 

✺ (Hole) single particle spectral function 

Sh
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π
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✺ Koltun sum rule (for 2N interactions): 



Dyson equation 
✺ Propagators solves the Dyson equations 

✺ (Hole) single particle spectral function 
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✺ Koltun sum rule (with NNN interactions): 



Binding Energy – 4He Case 

FRPA/sc0 FRPA/sc	
 Exact: 
Vlow-k: -29.00(2) -29.2 ±0.15	
 -29.19(5)   (Fadd.-Yak.) 

self-consistency in the 
mean field only  

estimates from different approx. to 
self-consistency 

 Self-consistent FRPA compares well with 
benchmark calculations on 4He 

[Nogga et al.,  Phys. Rev. C70, 061002 (2004)]	


[C. B., arXiv:0909.0336; 
 CERN Conf. Proc. -2010-001, Vol. 1, p. 137 ] 



Approaching open-shells in the 
mid-mass region: 

 
 Gorkov theory 
  proof-of-principle results 

 at 2nd order 

V.	
  Somà,	
  T.	
  Duguet,	
  CB,	
  	
  	
  	
  Phys.	
  Rev.	
  C84,	
  046317	
  (2011)	
  
	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  arXiv:1208.2472	
  [nucl-­‐th]	
  



Going to open-shells: Gorkov ansatz 

✺	
  Auxiliary	
  many-­‐body	
  state	
  

Introduce	
  a	
  “grand-­‐canonical”	
  poten=al	
  

minimizes	
  
under	
  the	
  constraint	
  

✺	
  Ansatz	
  

Mixes	
  various	
  par=cle	
  numbers	
  

4

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 〉 of
the system, one considers a symmetry breaking state |Ψ0〉
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0〉 ≡
even
∑

N

cN |ψN
0 〉 , (14)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0〉 is
chosen to minimize

Ω0 = 〈Ψ0|Ω|Ψ0〉 (15)

under the constraint

N = 〈Ψ0|N |Ψ0〉 , (16)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(15), together with the normalization condition

〈Ψ0|Ψ0〉 =
even
∑

N

|cN |2 = 1 , (17)

determines coefficients cN , while Eq. (16) fixes the chem-
ical potential µ.
By choosing |Ψ0〉 as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the
ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill
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with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as
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which follows from Eqs. (15) and (18).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0〉, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]
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′)
}

|Ψ0〉 , (20d)

where single-particle operators associated with the dual
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Heisenberg representation is defined as
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Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
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ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
in the block of b̄). Green’s functions G11 and G22 are
called normal propagators while off-diagonal ones, G12

and G21, are denoted as anomalous propagators.
Expanding the bra and the ket in Eq. (20) through

Eq. (14), Gorkov propagators can be expressed as linear
combinations of Green’s functions in the systems with
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ā†a(t)āb(t
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′)
}

|Ψ0〉

= −i
even
∑

N

c∗NcN 〈ψN
0 |T

{
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|ψN
0 〉

≡
even
∑

N

c∗NcN G22 (N,N)
ab (t, t′) , (23)

4

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 〉 of
the system, one considers a symmetry breaking state |Ψ0〉
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0〉 ≡
even
∑

N

cN |ψN
0 〉 , (14)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0〉 is
chosen to minimize

Ω0 = 〈Ψ0|Ω|Ψ0〉 (15)

under the constraint

N = 〈Ψ0|N |Ψ0〉 , (16)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(15), together with the normalization condition

〈Ψ0|Ψ0〉 =
even
∑

N

|cN |2 = 1 , (17)

determines coefficients cN , while Eq. (16) fixes the chem-
ical potential µ.
By choosing |Ψ0〉 as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the
ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (18)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (19)

which follows from Eqs. (15) and (18).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0〉, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ 〈Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0〉 , (20a)

i G12
ab(t, t

′) ≡ 〈Ψ0|T {aa(t)āb(t′)} |Ψ0〉 , (20b)

i G21
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)a
†
b(t

′)
}

|Ψ0〉 , (20c)

i G22
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0〉 , (20d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (21a)

a†a(t) =
[

a(Ω)
a (t)

]†

≡ exp[iΩt] a†a exp[−iΩt] . (21b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
in the block of b̄). Green’s functions G11 and G22 are
called normal propagators while off-diagonal ones, G12

and G21, are denoted as anomalous propagators.
Expanding the bra and the ket in Eq. (20) through

Eq. (14), Gorkov propagators can be expressed as linear
combinations of Green’s functions in the systems with
N,N ± 2, N ± 4, ... particles in the case of G11 and G22

G11
ab(t, t

′) = −i 〈Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0〉

= −i
even
∑

N

c∗NcN 〈ψN
0 |T

{

aa(t)a
†
b(t

′)
}

|ψN
0 〉

≡
even
∑

N

c∗NcN G11 (N,N)
ab (t, t′) , (22)

G22
ab(t, t

′) = −i 〈Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0〉

= −i
even
∑

N

c∗NcN 〈ψN
0 |T

{

ā†a(t)āb(t
′)
}

|ψN
0 〉

≡
even
∑

N

c∗NcN G22 (N,N)
ab (t, t′) , (23)
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Binding energies 

✺ Systematic along 
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chains has become 
available 

➟ Overbinding with A: traces need for (at least) NNN forces 
➟ Effect of self-consistency significant; i.e. less bound than MBPT2 

➟ Correlation energy close to CCSD and FRPA (thorough comparison needed) 
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FIG. 1. (Color online) Binding energy for 44Ca (upper panel) and
74Ni (lower panel) as a function of the harmonic oscillator spacing
�ω and for an increasing size Nmax ≡ max (2n + l) of the single-
particle model space. Results are from (sc0) second-order Gorkov-
SCGF calculations. The inserts show a zoom on the most converged
results.

methods. Overall, convergence is well attained for Nmax = 13.
In 44Ca, going from Nmax = 11 to Nmax = 13 lowers the min-
ima by just a few keV. Also, the binding energy calculated for
Nmax = 13 varies by less than 200 keV over a wide range of �ω
values. In 74Ni, going from Nmax = 11 to Nmax = 13 yields an
additional 600 keV, while scanning a large range of oscillator
frequencies only changes the binding energy by about 1 MeV.

Table I lists the results obtained for various observables
of interest in the ground state of 44Ca and 74Ni. The values
quoted are extrapolated to infinite oscillator basis size using
the method proposed in Ref. [28]. At this point, results are
mostly illustrative because of the lack of 3N forces. The lat-
ter play a key role in the saturation of nuclear matter such
that omitting it generates too much binding and too small nu-
clei when using soft 2N interactions [18]. The neglect of 3N
forces also induces too small pairing gaps as a result of the
too low density of states in the nucleon addition and removal
spectra (see below). It is our short-term objective to add 3N
forces to the present theoretical scheme.

Figure 2 displays one-neutron addition and removal spec-
tral strength distributions (SSD) in 44Ca. Results are shown
over a large range of final states in 43Ca and 45Ca characterized
by spectroscopic factors as small as 2.10−3 (i.e. 0.2%). One
observes a fragmentation of the spectroscopic strength that is
characteristic of correlated many-body systems. Overall the
pattern is similar to the one found in doubly-magic nuclei [3].
Close to the Fermi energy, however, one notices a feature that
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FIG. 2. (Color online) One-neutron addition and removal spec-
tral strength distributions in 44Ca obtained from second-order (sc0)
Gorkov-SCGF calculations. For each final state in 43Ca (left to the
dashed line) and in 45Ca (right to the dashed line), the spectroscopic
factor is plotted as a function of its separation energy to the ground
state of 44Ca. Energies above 0 MeV correspond to n+44Ca scatter-
ing states [26]. Final states with different J

π values are separated for
clarity. Results correspond to the minimum of the convergence plots
shown in Fig. 1. Although center of mass motion is subtracted by
using Hint, the variation of that correction going from A to A±1 is
neglected. The associated error is small in such medium-mass nu-
clei [21].

is unique to open-shell nuclei, i.e. the 7/2− strength is equally
fragmented into additional and removal channels, which re-
sults in the fact that both 43Ca and 45Ca ground-states have an-
gular momentum and parity J

π = 7/2−. Such a fragmentation
reflects static pairing correlations that manifest themselves as
a result of emerging degeneracies in the ground state of open-
shell nuclei. It is the main strength of Gorkov-SCGF theory
to explicitly handle such degeneracies and resulting pairing
correlations.

The right column in the upper panel of Fig. 3 supplies a
zoom of Fig. 2 around the Fermi energy for states with spec-
troscopic factors larger than 10−1 (i.e. 10%). The left column
provides the same quantities for first-order (i.e. HFB) calcula-
tions. Last but not least, the center column displays effective
single-neutron energies. The same information is provided for
74Ni in the lower panel of Fig. 3.

The main fragmentation of the strength is absent from first-
order calculations, i.e. it is due to dynamical correlations that
come in at second order and that are qualitatively the same as
for closed-shell nuclei. Contrarily, the fragmentation of the
strength in the vicinity of the Fermi energy into two peaks
of (essentially) equal strength is qualitatively accounted for
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FIG. 1. (Color online) Binding energy for 44Ca (upper panel) and
74Ni (lower panel) as a function of the harmonic oscillator spacing
�ω and for an increasing size Nmax ≡ max (2n + l) of the single-
particle model space. Results are from (sc0) second-order Gorkov-
SCGF calculations. The inserts show a zoom on the most converged
results.

methods. Overall, convergence is well attained for Nmax = 13.
In 44Ca, going from Nmax = 11 to Nmax = 13 lowers the min-
ima by just a few keV. Also, the binding energy calculated for
Nmax = 13 varies by less than 200 keV over a wide range of �ω
values. In 74Ni, going from Nmax = 11 to Nmax = 13 yields an
additional 600 keV, while scanning a large range of oscillator
frequencies only changes the binding energy by about 1 MeV.

Table I lists the results obtained for various observables
of interest in the ground state of 44Ca and 74Ni. The values
quoted are extrapolated to infinite oscillator basis size using
the method proposed in Ref. [28]. At this point, results are
mostly illustrative because of the lack of 3N forces. The lat-
ter play a key role in the saturation of nuclear matter such
that omitting it generates too much binding and too small nu-
clei when using soft 2N interactions [18]. The neglect of 3N
forces also induces too small pairing gaps as a result of the
too low density of states in the nucleon addition and removal
spectra (see below). It is our short-term objective to add 3N
forces to the present theoretical scheme.

Figure 2 displays one-neutron addition and removal spec-
tral strength distributions (SSD) in 44Ca. Results are shown
over a large range of final states in 43Ca and 45Ca characterized
by spectroscopic factors as small as 2.10−3 (i.e. 0.2%). One
observes a fragmentation of the spectroscopic strength that is
characteristic of correlated many-body systems. Overall the
pattern is similar to the one found in doubly-magic nuclei [3].
Close to the Fermi energy, however, one notices a feature that
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FIG. 2. (Color online) One-neutron addition and removal spec-
tral strength distributions in 44Ca obtained from second-order (sc0)
Gorkov-SCGF calculations. For each final state in 43Ca (left to the
dashed line) and in 45Ca (right to the dashed line), the spectroscopic
factor is plotted as a function of its separation energy to the ground
state of 44Ca. Energies above 0 MeV correspond to n+44Ca scatter-
ing states [26]. Final states with different J

π values are separated for
clarity. Results correspond to the minimum of the convergence plots
shown in Fig. 1. Although center of mass motion is subtracted by
using Hint, the variation of that correction going from A to A±1 is
neglected. The associated error is small in such medium-mass nu-
clei [21].

is unique to open-shell nuclei, i.e. the 7/2− strength is equally
fragmented into additional and removal channels, which re-
sults in the fact that both 43Ca and 45Ca ground-states have an-
gular momentum and parity J

π = 7/2−. Such a fragmentation
reflects static pairing correlations that manifest themselves as
a result of emerging degeneracies in the ground state of open-
shell nuclei. It is the main strength of Gorkov-SCGF theory
to explicitly handle such degeneracies and resulting pairing
correlations.

The right column in the upper panel of Fig. 3 supplies a
zoom of Fig. 2 around the Fermi energy for states with spec-
troscopic factors larger than 10−1 (i.e. 10%). The left column
provides the same quantities for first-order (i.e. HFB) calcula-
tions. Last but not least, the center column displays effective
single-neutron energies. The same information is provided for
74Ni in the lower panel of Fig. 3.

The main fragmentation of the strength is absent from first-
order calculations, i.e. it is due to dynamical correlations that
come in at second order and that are qualitatively the same as
for closed-shell nuclei. Contrarily, the fragmentation of the
strength in the vicinity of the Fermi energy into two peaks
of (essentially) equal strength is qualitatively accounted for
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EA
0 ∆(3)

n (A) rrms
44Ca −669.6(1) 1.16 2.48
74Ni −1269.7(2) 1.17(1) 2.75

TABLE I. Binding energy (MeV), neutron pairing gap (MeV) and
matter root mean square radius (fm). Results are from second-order
(sc0) Gorkov-SCGF calculations and are extrapolated to infinite os-
cillator basis size using the method of Ref. [28]. The extrapolation
error is indicated only when it is bigger than the last digit shown.

at first order and thus relates predominantly to static pairing
correlations. Quantitatively, the energy spacing between the
two low-lying 7/2− states in the SSD of 44Ca is increased by
second-order effects. This is in contrast to the behavior of 74Ni
where the separation of the low-lying 9/2+ states is instead
decreased. Given that such a spacing is equal to (twice) the
pairing gap, one concludes that the coupling of Cooper pairs
to non-collective fluctuations may already affect pairing cor-
relations in open-shell nuclei in either way. A detailed study
of such a feature is left to a forthcoming publication 4. Back
to the overall spectrum, one observes that the position of the
dominant peak of a given Jπ value is significantly modified by
second-order effects such that the corresponding spectrum is
more compressed than at first order. However, it is still signif-
icantly too spread out compared to experiment due to missing
3N forces and the lack of coupling to collective fluctuations.

Effective single-particle energies recollect the fragmented
strength [11, 19, 20] from both one-nucleon addition and re-
moval channels. Many-body correlations are largely screened
out from ESPEs, which picture the averaged single-nucleon
dynamics inside the correlated system. Two different features
are identifiable in the ESPE spectrum ecent

a when compared
to observable one-nucleon addition and removal spectra E±k .
The ESPE ecent

1 f7/2
(ecent

1g9/2
) located at the Fermi energy recollects

the strength of the two equally important 7/2− (9/2+) states.
Other ESPEs recollect the strength of a low-lying dominant
peak and of a highly fragmented strength distributed at higher
excitation energies such that they move away from the Fermi
energy to closely match first-order, i.e. HFB, peaks. This is
consistent with the fact that ESPEs inform on the averaged,
mean-field-like, one nucleon dynamics.

Conclusions. - We have presented the results of the first-
ever ab-initio calculations of medium-mass (truly) open-shell
nuclei. Such calculations are based on the implementation
of self-consistent Gorkov Green’s function theory on the ba-
sis of realistic nuclear interactions. Taking 44Ca and 74Ni as
test cases, we have demonstrated the good convergence of the
results with respect to the basis size and discussed several

4 A quantitative treatment of nuclear superfluidity through ab-initio ap-
proaches requires to treat the coupling of the Cooper pair to collective
density, spin and isospin fluctuations [13, 29]. In the present context,
this necessitates the implementation of the (generalized) FRPA expansion
scheme [15, 16].
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FIG. 3. (Color online) Left: One-neutron addition and removal spec-
tral strength distribution obtained from first-order (HFB) Gorkov-
SCGF calculations. Right: same as left panel for second-order (sc0)
calculations. Center: Baranger ESPEs reconstructed from second-
order (sc0) Gorkov-SCGF calculations. Upper panel: 44Ca. Lower
panel: 74Ni.

quantities of experimental interests including ground-state
energies, pairing gaps and particle addition/removal spec-
troscopy. Such calculations increase the reach of ab-initio cal-
culations in the mid-mass region tremendously and are now
being performed systematically over long isotopic and iso-
tonic chains [21]. The short-term objectives are to incor-
porate three-nucleon interactions into the framework and to
extend state-of-the-art Faddeev-random-phase-approximation
truncation scheme from doubly-closed shell nuclei to open-
shell nuclei, i.e to the present Gorkov context.
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Use effective degrees of freedom: p,n,pions

Effective Field Theory:  Bridges the non-perturbative low-energy regime of QCD with forces
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Modern realistic nuclear forces 

In-MEDIUM T MATRIX FOR NUCLEAR MATTER WITH . . . PHYSICAL REVIEW C 78, 054003 (2008)

The radial functions Y (r) and T (r) are the Yukawa and
tensor functions, respectively, the tensor operator is defined
as Sij = 3(σ i · r̂ ij )(σ j · r̂ ij ) − σ i · σ j , where r̂ ij is the unit
vector of the distance between particles i and j . To determine
the overall strength of the TBF and the relative strength
between the two terms two parameters are present (A < 0
and U > 0), to be tuned to reproduce the saturation properties
of symmetric nuclear matter. Since different NN potentials
lead to different saturation curves one should expect these
parameters to depend on the particular choice of the two-body
force.

The three-body interaction depends on the spatial, spin,
and isospin coordinates of the three nucleons, and in such
a form cannot be used in the calculations. We then need to
introduce some approximation and derive an effective two-
particle potential. This can be done by averaging the action of
the third nucleon, resulting in a mean field felt by the other
two:

V 3
eff(q, q ′) =

∑

στ

∫
d3k

(2π )3
n(k) V 3(k, q, q ′), (11)

where V 3(k, q, q ′) is the Fourier transformed form of Eq. (7)
and

n(k) =
∫

dω

2π
G<(k,ω) (12)

is the particle momentum distribution. The sum over spin
and isospin degrees of freedom just reminds us that V 3 has
a nontrivial structure in the σ and τ spaces which has to be
taken care of (we did not write explicitly spin and isospin
indices).

This average has to be performed for each of the three
nucleons and over all their possible permutations, resulting in
nine different terms. One has to pay particular attention to the
spin-isospin and tensor dependence of the various averages
and finally get, for each of the nine permutations, an effective
potential of the form

V 3
eff(q,q ′) = V R

s (q,q ′) + V 2π
s (q,q ′) + V 2π

στ (q, q ′)σ · σ ′τ · τ ′

+V 2π
Sτ (q, q ′)S(q, q ′) τ · τ ′, (13)

where V R
s , V 2π

s , V 2π
στ , and V 2π

Sτ are now scalar functions.
Once we have obtained V 3

eff (density dependent) we add it
to the two-body potential in Eq. (3)

V −→ V ′ = V + V 3
eff, (14)

and perform the T -matrix iteration.

IV. BINDING ENERGY AND SINGLE PARTICLE
PROPERTIES

We perform calculations with two different parametriza-
tions of the NN interaction, the CD-Bonn [49], and
the Nijmegen [50] potentials. For both of them we compute
the energy per particle directly from the expectation value
of the interaction Hamiltonian, for symmetric and for pure
neutron matter, with and without TBF. In the case of three-body
forces we have tuned the parameters A and U in Eqs. (8) and
(10) in the symmetric case in order to reproduce the saturation

0.5 1 1.5 2 2.5 3

-20

-15

-10

-5

0

5

10

15 variational + TBF
BHF + TBF
CD-Bonn
CD-Bonn + TBF
Nijmegen
Nijmegen + TBF

E
 / 

A   [ M
eV

 ]

ρ / ρ0

FIG. 1. (Color online) Energy per particle in symmetric nuclear
matter as a function of density (in units of the nuclear saturation
density ρ0 = 0.16 fm−3). T -matrix calculations are compared to the
variational [2] and BHF [9] approaches, both including TBF.

density ρ0 and binding energy E0. Since the averaging over
the third nucleon in TBF terms represents a rather crude
approximation, the resulting numerical values of the parame-
ters of the TBF are different than in other approaches.

A. Symmetric nuclear matter

The energy per particle as a function of density for sym-
metric nuclear matter is shown in Fig. 1. The calculations with
only two-body forces fail to reproduce the correct saturation
behavior, predicting a saturation density ρ = 1.47 ρ0 in the
case of the Nijmegen potential and ρ = 1.79 ρ0 for CD-Bonn.
After the inclusion of three-nucleon interactions the situation
is significantly improved, with both curves saturating around
the phenomenological value ρ0 = 0.16 fm−3 and yielding a
correct binding energy1 (Nijmegen EB = −16.4 MeV and
CD-Bonn EB = −16.3 MeV).

1We estimate the numerical error on all the energy calculations to
be ±0.5 MeV, for details see [26].
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FIG. 2: Single-particle energies of the neutron d5/2, s1/2 and
d3/2 orbitals measured from the energy of 16O as a function of
neutron number N . (a) SPE calculated from a G matrix and
from low-momentum interactions Vlow k. (b) SPE obtained
from the phenomenological forces SDPF-M [14] and USD-
B [15]. (c,d) SPE including contributions from 3N forces due
to∆ excitations and chiral EFT 3N interactions at N2LO [26].
The changes due to 3N forces based on ∆ excitations are
highlighted by the shaded areas.

sures N = 8, 14, 16, and 20. The evolution of the SPE
is due to interactions as neutrons are added. For the
SPE based on NN forces in Fig. 2 (a), the d3/2 orbital
decreases rapidly as neutrons occupy the d5/2 orbital,
and remains well-bound from N = 14 on. This leads
to bound oxygen isotopes out to N = 20 and puts the
neutron drip-line incorrectly at 28O. This result appears
to depend only weakly on the renormalization method
or the NN interaction used. We demonstrate this by
showing SPE calculated in the G matrix formalism [11],
which sums particle-particle ladders, and based on low-
momentum interactions Vlow k [12] obtained from chiral
NN interactions at next-to-next-to-next-to-leading order
(N3LO) [13] using the renormalization group. Both cal-
culations include core polarization effects perturbatively
(including diagram Fig. 3 (d) with the ∆ replaced by a
nucleon and all other second-order diagrams) and start
from empirical SPE [14] in 17O. The empirical SPEs con-
tain effects from the core and its excitations, including
effects due to 3N forces.
We next show in Fig. 2 (b) the SPE obtained from the

phenomenological forces SDPF-M [14] and USD-B [15]
that have been fit to reproduce experimental binding en-

ergies and spectra. This shows a striking difference com-
pared to Fig. 2 (a): As neutrons occupy the d5/2 orbital,
with N evolving from 8 to 14, the d3/2 orbital remains
almost at the same energy and is not well-bound out to
N = 20. The dominant differences between Figs. 2 (a)
and (b) can be traced to the two-body monopole compo-
nents, which determine the average interaction between
two orbitals. The monopole components of a general two-
body interaction V are given by an angular average over
all possible orientations of the two nucleons in orbitals lj
and l′j′ [16],

V mono
j,j′ =

∑

m,m′

〈jm j′m′|V |jm j′m′〉
/

∑

m,m′

1 , (1)

where the sum over magnetic quantum numbers m and
m′ can be restricted by antisymmetry (see [17, 18] for
details). The SPE of the orbital j is effectively shifted by
V mono
j,j′ multiplied by the occupation number of the orbital

j′. This leads to the change in the SPE and determines
shell structure and the location of the drip-line [17–20].
The comparison of Figs. 2 (a) and (b) suggests that the

monopole interaction between the d3/2 and d5/2 orbitals
obtained from NN theories is too attractive, and that the
oxygen anomaly can be solved by additional repulsive
contributions to the two-neutron monopole components,
which approximately cancel the average NN attraction
on the d3/2 orbital. With extensive studies based on NN
forces, it is unlikely that such a distinct property would
have been missed, and it has been argued that 3N forces
may be important for the monopole components [21].
Next, we show that 3N forces among two valence neu-

trons and one nucleon in the 16O core give rise to repul-
sive monopole interactions between the valence neutrons.
While the contributions of the FM 3N force to other
quantities can be different, the shell-model configurations
composed of valence neutrons probe the long-range parts
of 3N forces. The repulsive nature of this 3N mechanism
can be understood based on the Pauli exclusion princi-
ple. Figure 3 (a) depicts the leading contribution to NN
forces due to the excitation of a ∆, induced by the ex-
change of pions with another nucleon. Because this is
a second-order perturbation, its contribution to the en-
ergy and to the two-neutron monopole components has
to be attractive. This is part of the attractive d3/2-d5/2
monopole component obtained from NN forces.
In nuclei, the process of Fig. 3 (a) leads to a change of

the SPE of the j,m orbital due to the excitation of a core
nucleon to a ∆, as illustrated in Fig. 3 (b) where the ini-
tial valence neutron is virtually excited to another j′,m′

orbital. As discussed, this lowers the energy of the j,m
orbital and thus increases its binding. However, in nuclei
this process is forbidden by the Pauli exclusion princi-
ple, if another neutron occupies the same orbital j′,m′,
as shown in Fig. 3 (c). The corresponding contribution
must then be subtracted from the SPE change due to
Fig. 3 (b). This is taken into account by the inclusion

Chiral EFT for nuclear forces: 

(3NF arise naturally at N2LO)	
  

Need at LEAST 3NF!!! 
(“cannot” do RNB physics without…)	
  

Single particle spectrum at Efermi:	
  
	
  

Saturation of nuclear matter:	
  

[T. Otsuka et al.,#
Phys Rev. Lett  105, #
32501 (2010)]#

[V. Somà, Phys Rev. C 78,#
 054003 (2008))]#



Inclusion of NNN forces  

✺ NNN forces can enter diagrams in three different ways: 

Correction to external 
1-Body interaction	
  

Correction to  
non-contracted  
2-Body interaction	
  

pure 3-Body 
contribution	
  

- Contractions are with fully correlated density matrices     
   (BEYOND a normal ordering…) 

1
4
_	
   gII (ω)	
  

 A. Carbone, A. Cipollone, CB, A. Rios, A Polls	
  



Inclusion of NNN forces  

✺ NNN forces can enter diagrams in three different ways: 

Correction to external 
1-Body interaction	
  

Correction to  
non-contracted  
2-Body interaction	
  

pure 3-Body 
contribution	
  

- Contractions are with fully correlated density matrices     
   (BEYOND a normal ordering…) 

1
4
_	
   gII (ω)	
  

 A. Carbone, A. Cipollone, CB, A. Rios, A Polls	
  



Inclusion of NNN forces  

✺ NNN forces can enter diagrams in three different ways: 

Correction to external 
1-Body interaction	
  

Correction to  
non-contracted  
2-Body interaction	
  

pure 3-Body 
contribution	
  

1
2
_	
  

 A. Carbone, A. Cipollone, CB, A. Rios, A Polls	
  



 A. Cipollone, CB, P. Navratil	
  

4

QUASIPARTICLE AND QUASIHOLE STATES OF NUCLEI . . . PHYSICAL REVIEW C 79, 064313 (2009)

+

+−

=

=g II

Π

g

Π(ph)

(pp/hh)II

(ph)

(pp/hh)

FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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II
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g

FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑

n#∈F

(
φn

α

)∗
φn

β

ω − εIMP
n + iη

+
∑

k∈F

φk
α

(
φk

β

)∗

ω − εIMP
k − iη

, (14)
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)
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(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑

n#∈F

(
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+
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ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄
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µ′′ν ′′λ′′,µνλ(ω)
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µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄
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are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of
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where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑
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(
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
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(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of
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ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
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µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of
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tion method up to third order in the the perturbation

theory (PT): ADC(3). Here the contribution of 2p − 1h
and 2h−1p are consistently included and the interaction

between pp/hh or ph are modeled with a TDA scheme.

The same level of both accuracy and consistency can be

obtained using Fadeev-TDA in a re-phrased formulation

that has been fully described in several papers in the case

of two-body interaction only [3]. The inclusion of 3NF

effects can be done passing from T , V operators, to the

effective T̃ ,Ṽ : the new equations concerning polarization

and particle-particle (hole-hole) propagator in TDA ap-

proximation are shown diagrammatically in fig. (4) to-

gether with the effective the two-body potential (see fig.

3). In the FTDA approach then we still need to add them

consistently to shape the (2p − 1h − 2h − 1p)irreducible

propagator R(w) (see for example [4]), whose contribu-

tion to the s-p self energy in the 2p-1h channel, is drawn

in (3) (the 2h-1p is straightforward). Moreover, in (3)

we show how the new arising 3NF effective terms can be

summed up using slightly modified FTDA integral equa-

tion. The need to separate one and two-body contribu-

tion of 3NF is clear and lays on the difference between the

combinatorial factors in the two cases. All the properties

of these equations still remain: they include the effect

of ph and pp/hh motion allowing interferences between

them, and at the same time giving the right combinato-

rial factor to the second order diagrams without the need

of spurious subtraction.

B. Iterative methods

The SCGF approach has been fully described in previ-

ous papers[3, 4] although they were limited to 2NF only

. The self-energy matrix Σ
�

ββ� is expanded in term of the

dressed propagator up to the order and the level of ac-

curacy required. All the lines in Σ
�

should be thought

as dressed, this means that the actual degrees of freedom

are the excitations of the fully correlated system. The ef-

fects of the fragmentation are already included in the self-

consistency calculation. In practical case, we need an in-

put propagator to start with, we choose the HF propaga-

tor to construct the dynamical part �Σ�
(ω) of self-energy

in (5). The g1st
iteration

(ω) solution of Dyson equation in

(4) is then employed to evaluate the self-energy for sec-

ond cycle. This procedure is iterated up to convergence.

The inclusion of 3NF does not modify this scheme, never-

theless the two-body potential is now density-dependent.

This increases sharply the computational time required

since �T , �V should be re-built at each step. We discuss in

a different section, several approximations aimed to limit

the computational time.

C. Evaluation of �W �

The mean value of �W �, in eq. (14), can be estimated

at several orders in PT thanks to the perturbative ex-

pansion of ppp/hhh propagator in eq. (??). It is an aim

of the present work to investigate which approximations

are required to achieve a proper level of accuracy. The

dominant contribution comes from the HF term

�W �0−HF ≡ 1

6
Wαβγ,µνξ ρ0

µα
ρ0

ν,β
ρ0

ξ,γ
, (16)
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑

n#∈F

(
φn

α

)∗
φn

β

ω − εIMP
n + iη

+
∑

k∈F

φk
α

(
φk

β

)∗

ω − εIMP
k − iη

, (14)

064313-5

Σ∗ +
1
2

+

QUASIPARTICLE AND QUASIHOLE STATES OF NUCLEI . . . PHYSICAL REVIEW C 79, 064313 (2009)

+

+−

=

=g II

Π

g

Π(ph)

(pp/hh)II

(ph)

(pp/hh)

FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)
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µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
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µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑
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(
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+
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑

n#∈F

(
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+
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =
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+
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑
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(
φn

α

)∗
φn

β

ω − εIMP
n + iη

+
∑

k∈F

φk
α

(
φk

β

)∗

ω − εIMP
k − iη

, (14)

064313-5

Σ∗ +
1
2

+

QUASIPARTICLE AND QUASIHOLE STATES OF NUCLEI . . . PHYSICAL REVIEW C 79, 064313 (2009)

+

+−

=

=g II

Π

g

Π(ph)

(pp/hh)II

(ph)

(pp/hh)

FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑
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(
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α
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+
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
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µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
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µ′′ν ′′λ′′,µνλ(ω)
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(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
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tion method up to third order in the the perturbation

theory (PT): ADC(3). Here the contribution of 2p − 1h
and 2h−1p are consistently included and the interaction

between pp/hh or ph are modeled with a TDA scheme.

The same level of both accuracy and consistency can be

obtained using Fadeev-TDA in a re-phrased formulation

that has been fully described in several papers in the case

of two-body interaction only [3]. The inclusion of 3NF

effects can be done passing from T , V operators, to the

effective T̃ ,Ṽ : the new equations concerning polarization

and particle-particle (hole-hole) propagator in TDA ap-

proximation are shown diagrammatically in fig. (4) to-

gether with the effective the two-body potential (see fig.

3). In the FTDA approach then we still need to add them

consistently to shape the (2p − 1h − 2h − 1p)irreducible

propagator R(w) (see for example [4]), whose contribu-

tion to the s-p self energy in the 2p-1h channel, is drawn

in (3) (the 2h-1p is straightforward). Moreover, in (3)

we show how the new arising 3NF effective terms can be

summed up using slightly modified FTDA integral equa-

tion. The need to separate one and two-body contribu-

tion of 3NF is clear and lays on the difference between the

combinatorial factors in the two cases. All the properties

of these equations still remain: they include the effect

of ph and pp/hh motion allowing interferences between

them, and at the same time giving the right combinato-

rial factor to the second order diagrams without the need

of spurious subtraction.

B. Iterative methods

The SCGF approach has been fully described in previ-

ous papers[3, 4] although they were limited to 2NF only

. The self-energy matrix Σ
�

ββ� is expanded in term of the

dressed propagator up to the order and the level of ac-

curacy required. All the lines in Σ
�

should be thought

as dressed, this means that the actual degrees of freedom

are the excitations of the fully correlated system. The ef-

fects of the fragmentation are already included in the self-

consistency calculation. In practical case, we need an in-

put propagator to start with, we choose the HF propaga-

tor to construct the dynamical part �Σ�
(ω) of self-energy

in (5). The g1st
iteration

(ω) solution of Dyson equation in

(4) is then employed to evaluate the self-energy for sec-

ond cycle. This procedure is iterated up to convergence.

The inclusion of 3NF does not modify this scheme, never-

theless the two-body potential is now density-dependent.

This increases sharply the computational time required

since �T , �V should be re-built at each step. We discuss in

a different section, several approximations aimed to limit

the computational time.

C. Evaluation of �W �

The mean value of �W �, in eq. (14), can be estimated

at several orders in PT thanks to the perturbative ex-

pansion of ppp/hhh propagator in eq. (??). It is an aim

of the present work to investigate which approximations

are required to achieve a proper level of accuracy. The

dominant contribution comes from the HF term

�W �0−HF ≡ 1

6
Wαβγ,µνξ ρ0

µα
ρ0

ν,β
ρ0

ξ,γ
, (16)
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)
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(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of
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Ṽ

Ṽ
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
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µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑
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(
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α

)∗
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β
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+
∑

k∈F
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑

n#∈F

(
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+
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =
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n#∈F

(
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+
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑
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(
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)
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(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
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∑

n#∈F

(
φn

α

)∗
φn

β

ω − εIMP
n + iη

+
∑

k∈F

φk
α

(
φk

β

)∗

ω − εIMP
k − iη

, (14)

064313-5

Ṽ
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ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =
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tion method up to third order in the the perturbation

theory (PT): ADC(3). Here the contribution of 2p − 1h
and 2h−1p are consistently included and the interaction

between pp/hh or ph are modeled with a TDA scheme.

The same level of both accuracy and consistency can be

obtained using Fadeev-TDA in a re-phrased formulation

that has been fully described in several papers in the case

of two-body interaction only [3]. The inclusion of 3NF

effects can be done passing from T , V operators, to the

effective T̃ ,Ṽ : the new equations concerning polarization

and particle-particle (hole-hole) propagator in TDA ap-

proximation are shown diagrammatically in fig. (4) to-

gether with the effective the two-body potential (see fig.

3). In the FTDA approach then we still need to add them

consistently to shape the (2p − 1h − 2h − 1p)irreducible

propagator R(w) (see for example [4]), whose contribu-

tion to the s-p self energy in the 2p-1h channel, is drawn

in (3) (the 2h-1p is straightforward). Moreover, in (3)

we show how the new arising 3NF effective terms can be

summed up using slightly modified FTDA integral equa-

tion. The need to separate one and two-body contribu-

tion of 3NF is clear and lays on the difference between the

combinatorial factors in the two cases. All the properties

of these equations still remain: they include the effect

of ph and pp/hh motion allowing interferences between

them, and at the same time giving the right combinato-

rial factor to the second order diagrams without the need

of spurious subtraction.

B. Iterative methods

The SCGF approach has been fully described in previ-

ous papers[3, 4] although they were limited to 2NF only

. The self-energy matrix Σ
�

ββ� is expanded in term of the

dressed propagator up to the order and the level of ac-

curacy required. All the lines in Σ
�

should be thought

as dressed, this means that the actual degrees of freedom

are the excitations of the fully correlated system. The ef-

fects of the fragmentation are already included in the self-

consistency calculation. In practical case, we need an in-

put propagator to start with, we choose the HF propaga-

tor to construct the dynamical part �Σ�
(ω) of self-energy

in (5). The g1st
iteration

(ω) solution of Dyson equation in

(4) is then employed to evaluate the self-energy for sec-

ond cycle. This procedure is iterated up to convergence.

The inclusion of 3NF does not modify this scheme, never-

theless the two-body potential is now density-dependent.

This increases sharply the computational time required

since �T , �V should be re-built at each step. We discuss in

a different section, several approximations aimed to limit

the computational time.

C. Evaluation of �W �

The mean value of �W �, in eq. (14), can be estimated

at several orders in PT thanks to the perturbative ex-

pansion of ppp/hhh propagator in eq. (??). It is an aim

of the present work to investigate which approximations

are required to achieve a proper level of accuracy. The

dominant contribution comes from the HF term

�W �0−HF ≡ 1

6
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ν,β
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
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∑

n#∈F

(
φn

α

)∗
φn

β

ω − εIMP
n + iη

+
∑

k∈F

φk
α

(
φk

β

)∗

ω − εIMP
k − iη

, (14)

064313-5

Σ∗ +
1
2

+

QUASIPARTICLE AND QUASIHOLE STATES OF NUCLEI . . . PHYSICAL REVIEW C 79, 064313 (2009)

+

+−

=

=g II

Π

g

Π(ph)

(pp/hh)II

(ph)

(pp/hh)

FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑
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(
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑
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(
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑

n#∈F

(
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑

n#∈F

(
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑
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(
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+
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
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tion method up to third order in the the perturbation

theory (PT): ADC(3). Here the contribution of 2p − 1h
and 2h−1p are consistently included and the interaction

between pp/hh or ph are modeled with a TDA scheme.

The same level of both accuracy and consistency can be

obtained using Fadeev-TDA in a re-phrased formulation

that has been fully described in several papers in the case

of two-body interaction only [3]. The inclusion of 3NF

effects can be done passing from T , V operators, to the

effective T̃ ,Ṽ : the new equations concerning polarization

and particle-particle (hole-hole) propagator in TDA ap-

proximation are shown diagrammatically in fig. (4) to-

gether with the effective the two-body potential (see fig.

3). In the FTDA approach then we still need to add them

consistently to shape the (2p − 1h − 2h − 1p)irreducible

propagator R(w) (see for example [4]), whose contribu-

tion to the s-p self energy in the 2p-1h channel, is drawn

in (3) (the 2h-1p is straightforward). Moreover, in (3)

we show how the new arising 3NF effective terms can be

summed up using slightly modified FTDA integral equa-

tion. The need to separate one and two-body contribu-

tion of 3NF is clear and lays on the difference between the

combinatorial factors in the two cases. All the properties

of these equations still remain: they include the effect

of ph and pp/hh motion allowing interferences between

them, and at the same time giving the right combinato-

rial factor to the second order diagrams without the need

of spurious subtraction.

B. Iterative methods

The SCGF approach has been fully described in previ-

ous papers[3, 4] although they were limited to 2NF only

. The self-energy matrix Σ
�

ββ� is expanded in term of the

dressed propagator up to the order and the level of ac-

curacy required. All the lines in Σ
�

should be thought

as dressed, this means that the actual degrees of freedom

are the excitations of the fully correlated system. The ef-

fects of the fragmentation are already included in the self-

consistency calculation. In practical case, we need an in-

put propagator to start with, we choose the HF propaga-

tor to construct the dynamical part �Σ�
(ω) of self-energy

in (5). The g1st
iteration

(ω) solution of Dyson equation in

(4) is then employed to evaluate the self-energy for sec-

ond cycle. This procedure is iterated up to convergence.

The inclusion of 3NF does not modify this scheme, never-

theless the two-body potential is now density-dependent.

This increases sharply the computational time required

since �T , �V should be re-built at each step. We discuss in

a different section, several approximations aimed to limit

the computational time.

C. Evaluation of �W �

The mean value of �W �, in eq. (14), can be estimated

at several orders in PT thanks to the perturbative ex-

pansion of ppp/hhh propagator in eq. (??). It is an aim

of the present work to investigate which approximations

are required to achieve a proper level of accuracy. The

dominant contribution comes from the HF term

�W �0−HF ≡ 1

6
Wαβγ,µνξ ρ0

µα
ρ0

ν,β
ρ0

ξ,γ
, (16)
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄
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µ′′ν ′′λ′′,µνλ(ω)
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(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)
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(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑
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(
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑
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(
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =
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(
φn

α

)∗
φn

β

ω − εIMP
n + iη

+
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k∈F
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],
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αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)
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µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =
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ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
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RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
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instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
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µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of
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tion method up to third order in the the perturbation

theory (PT): ADC(3). Here the contribution of 2p − 1h
and 2h−1p are consistently included and the interaction

between pp/hh or ph are modeled with a TDA scheme.

The same level of both accuracy and consistency can be

obtained using Fadeev-TDA in a re-phrased formulation

that has been fully described in several papers in the case

of two-body interaction only [3]. The inclusion of 3NF

effects can be done passing from T , V operators, to the

effective T̃ ,Ṽ : the new equations concerning polarization

and particle-particle (hole-hole) propagator in TDA ap-

proximation are shown diagrammatically in fig. (4) to-

gether with the effective the two-body potential (see fig.

3). In the FTDA approach then we still need to add them

consistently to shape the (2p − 1h − 2h − 1p)irreducible

propagator R(w) (see for example [4]), whose contribu-

tion to the s-p self energy in the 2p-1h channel, is drawn

in (3) (the 2h-1p is straightforward). Moreover, in (3)

we show how the new arising 3NF effective terms can be

summed up using slightly modified FTDA integral equa-

tion. The need to separate one and two-body contribu-

tion of 3NF is clear and lays on the difference between the

combinatorial factors in the two cases. All the properties

of these equations still remain: they include the effect

of ph and pp/hh motion allowing interferences between

them, and at the same time giving the right combinato-

rial factor to the second order diagrams without the need

of spurious subtraction.

B. Iterative methods

The SCGF approach has been fully described in previ-

ous papers[3, 4] although they were limited to 2NF only

. The self-energy matrix Σ
�

ββ� is expanded in term of the

dressed propagator up to the order and the level of ac-

curacy required. All the lines in Σ
�

should be thought

as dressed, this means that the actual degrees of freedom

are the excitations of the fully correlated system. The ef-

fects of the fragmentation are already included in the self-

consistency calculation. In practical case, we need an in-

put propagator to start with, we choose the HF propaga-

tor to construct the dynamical part �Σ�
(ω) of self-energy

in (5). The g1st
iteration

(ω) solution of Dyson equation in

(4) is then employed to evaluate the self-energy for sec-

ond cycle. This procedure is iterated up to convergence.

The inclusion of 3NF does not modify this scheme, never-

theless the two-body potential is now density-dependent.

This increases sharply the computational time required

since �T , �V should be re-built at each step. We discuss in

a different section, several approximations aimed to limit

the computational time.

C. Evaluation of �W �

The mean value of �W �, in eq. (14), can be estimated

at several orders in PT thanks to the perturbative ex-

pansion of ppp/hhh propagator in eq. (??). It is an aim

of the present work to investigate which approximations

are required to achieve a proper level of accuracy. The

dominant contribution comes from the HF term

�W �0−HF ≡ 1

6
Wαβγ,µνξ ρ0

µα
ρ0

ν,β
ρ0

ξ,γ
, (16)

Then:	
  

…approximations and some improvements still 
being assessed – this is all work in progress	
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Summary 
•  Self-Consistent Green’s Functions (SCGF), is a microscopic ab-initio method 
applicable to medium mass nuclei. Greatest advantage is the link to several 
(experimentally accessible) information. 

•  Proof of principle calculations Gorgov theory  are successful at 2nd order. This de 
facto show that the approach is viable and opens a whole new path: 

 Open-shell nuclei (many, not previously approachable otherwise!). 
 Reactions at driplines. 
 structure of next generation EDF. 
 

•  Addition of  three nucleon forces (3NF) are 
feasible and underway. 

 This implies a step up in the accuracy 
of “ab-initio” calculations.  

 
 
 
 
 
 

Thank you for your attention!!!	
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EA
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n (A) rrms
44Ca −669.6(1) 1.16 2.48
74Ni −1269.7(2) 1.17(1) 2.75

TABLE I. Binding energy (MeV), neutron pairing gap (MeV) and
matter root mean square radius (fm). Results are from second-order
(sc0) Gorkov-SCGF calculations and are extrapolated to infinite os-
cillator basis size using the method of Ref. [28]. The extrapolation
error is indicated only when it is bigger than the last digit shown.

at first order and thus relates predominantly to static pairing
correlations. Quantitatively, the energy spacing between the
two low-lying 7/2− states in the SSD of 44Ca is increased by
second-order effects. This is in contrast to the behavior of 74Ni
where the separation of the low-lying 9/2+ states is instead
decreased. Given that such a spacing is equal to (twice) the
pairing gap, one concludes that the coupling of Cooper pairs
to non-collective fluctuations may already affect pairing cor-
relations in open-shell nuclei in either way. A detailed study
of such a feature is left to a forthcoming publication 4. Back
to the overall spectrum, one observes that the position of the
dominant peak of a given Jπ value is significantly modified by
second-order effects such that the corresponding spectrum is
more compressed than at first order. However, it is still signif-
icantly too spread out compared to experiment due to missing
3N forces and the lack of coupling to collective fluctuations.

Effective single-particle energies recollect the fragmented
strength [11, 19, 20] from both one-nucleon addition and re-
moval channels. Many-body correlations are largely screened
out from ESPEs, which picture the averaged single-nucleon
dynamics inside the correlated system. Two different features
are identifiable in the ESPE spectrum ecent

a when compared
to observable one-nucleon addition and removal spectra E±k .
The ESPE ecent

1 f7/2
(ecent

1g9/2
) located at the Fermi energy recollects

the strength of the two equally important 7/2− (9/2+) states.
Other ESPEs recollect the strength of a low-lying dominant
peak and of a highly fragmented strength distributed at higher
excitation energies such that they move away from the Fermi
energy to closely match first-order, i.e. HFB, peaks. This is
consistent with the fact that ESPEs inform on the averaged,
mean-field-like, one nucleon dynamics.

Conclusions. - We have presented the results of the first-
ever ab-initio calculations of medium-mass (truly) open-shell
nuclei. Such calculations are based on the implementation
of self-consistent Gorkov Green’s function theory on the ba-
sis of realistic nuclear interactions. Taking 44Ca and 74Ni as
test cases, we have demonstrated the good convergence of the
results with respect to the basis size and discussed several

4 A quantitative treatment of nuclear superfluidity through ab-initio ap-
proaches requires to treat the coupling of the Cooper pair to collective
density, spin and isospin fluctuations [13, 29]. In the present context,
this necessitates the implementation of the (generalized) FRPA expansion
scheme [15, 16].
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FIG. 3. (Color online) Left: One-neutron addition and removal spec-
tral strength distribution obtained from first-order (HFB) Gorkov-
SCGF calculations. Right: same as left panel for second-order (sc0)
calculations. Center: Baranger ESPEs reconstructed from second-
order (sc0) Gorkov-SCGF calculations. Upper panel: 44Ca. Lower
panel: 74Ni.

quantities of experimental interests including ground-state
energies, pairing gaps and particle addition/removal spec-
troscopy. Such calculations increase the reach of ab-initio cal-
culations in the mid-mass region tremendously and are now
being performed systematically over long isotopic and iso-
tonic chains [21]. The short-term objectives are to incor-
porate three-nucleon interactions into the framework and to
extend state-of-the-art Faddeev-random-phase-approximation
truncation scheme from doubly-closed shell nuclei to open-
shell nuclei, i.e to the present Gorkov context.
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