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INTRODUCTION 
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Several theoretical studies indicate that there is no reasonable chance for 3n and 4n to exist(1)  
 
GANIL result(2) has not been confirmed   
another experiment scanning the 4n continuum(3) did not provide any clear signal yet 
 
It is enlightenning to make a parallel with a similar – better known – fermion system and ask 

(1) 2n is still on debate ! 
(2) M. Marques et al 
(3) D. Baumel et al d(8He,6Li)4n 
(4) R. Guardiola, J. Navarro, Phys. Rev. Lett. 84 (2001) 1144 

Since “there are” small 3He droplets(4) (N=35?) 
should we expect n droplets ? 

If YES where ? 
If NOT why ? 



INTRODUCTION (II) 

Answering this question requires a rigorous “ab initio” solution of the N-body problem 

-  Presumably for N>>1 
-  When bound state appears - if at all ! -  it will be loosely bound 
- The 3-n forces are out of control, although smaller than in normal nuclei 

It is certainly too ambitious ! 
But one can guess the tendency …. If one proceeds step by step 

1 The Formalism
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Two-neutrons 

We have considered 3 different Vnn : Argonne V18, Nijmegen Reid 93,  CD-MT13 (!) 
and the 3He-3He from Aziz (1991) 

I. They look very similar 
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Figure 1: Comparison between n-n and 3He-3He potentials (a) as a function of the interparticle
distance d (fm and Å respectively) (b) in dimensionless variables
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Figure 1: Comparison between n-n and 3He-3He potentials (a) as a function of the interparticle
distance d (fm and Å respectively) (b) in dimensionless variables



Two-neutrons 

II. Low energy parameters 

Two-body

n − n potentials: V18, Nijmegen Reid93, CD-MT13

3He−3He potential: Aziz 91

1. Similar behaviour (Figure)

2. Low energy parameters

n-n (fm)
V18 Reid CD-MT13 Exp5

a -18.49 -17.54 -18.59 −18.59 ± 0.4
r0 1.04 2.85 2.94 2.75 ± 0.1

He-He (Å)
Aziz 91 Exp

-7.24 ?
13.5 ?

3. None of them supports a dimer (a < 0)

4. 3He seems less favorable to make clusters

Critical values of scaling factor η binding a dimer (B=0)

V (η)(r) = ηVnn(r)

CD MT13 1.1011 h̄2/m
Nijm II 1.0876 41.4425
Reid 93 1.0872 ”
AV18 1.0799 ”
Aziz 1.2989 16.08

5. Realistic and MT13 Vnn behave differently with respect to η

MT13 gives less binding than realistic V’s: a premiere! (Figure)

III. None of them supports a dimer (since a<0) but atomic 3He seems less favorable ! 

IV. Forcing to bound: enhancement factor 
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Critical η values, binding a dimer with B=0

1

III. Different B(η) behaviour between realistic and MT13 potentials  
     MT13 gives less binding (a “première” !) 

Here again, 3He is less promising than n to form bound states  
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« A comparison to the available data for neutron-deuteron total cross sections and elastic scattering angular 
distributions cannot decisively exclude a possibility that the two neutrons can form 1S

0 
bound state. » 

Vnn has never been “measured”: it is extracted from pp + charge symetry or from A=3 (nd,nt,…) 
Even the sign of the scattering length and consequently a bound dineutron is questioned  
A recent paper (*) find its existence compatible with almost all nd data (if B<0.1 MeV). 
Modifying few % Vnn has no dramatic consequences in spectroscopy: can be absorbed by V3N 

H. Witala, W. Gloeckle, Phys.Rev. C85 (2012) 064003 



Beyond two-neutrons … 

Despite de absence of dimers, “bosonic” n-trimers and n-tetramers do exists ! 
By solving Faddeev-Yakubowski equations we(*) found: 
 
These are the simplest “Borromean systems” 
 
But they does not exist in case of 3He !! 

They disappear when impose an antisymmetric solution (Pauli principle) 
 
… but could appear – as in 3He – when adding more particles 
 
The existence of small fermion clusters is thus a compromise between the attractive 
pairwise interactions and the (“repulsive”) Pauli principle 

Beyond . . .

Despite the absence of dimers, ”bosonic” neutron trimers and tetramers
do exist (Borromean systems)

Bn3 ≈ 1MeV Bn4 ≈ 10MeV

Not for atomic 3He !!!

They all disappear when the Pauli principle is imposed

But could reappear – as in 3He – by adding more attractive pairwise
interactions

The existence of small clusters is the compromise we would
like to understand , between the attractive interaction and
the effective Pauli repulsion

How study something that does not exist?

We have investigated several directions

1. Scaling factor

useful but illegal!

2. Three-nucleon interactions (TNI)

3. Influence of neutron-neutron P- waves

4. Confining the system in a OH trap

Simulate n4 in the field of a 10Be core (like in 14Be)

5. ”dimer”-”dimer” scattering

How to study something that does no exist ?  

There are several ways…  

(*) R. Lazauskas, JC, Phys Rev. C 



I. In Quantum Mechanics things always “exists”  
   … even if they do not belong to the physical world   

They live in “another universe” (Second Riemann sheet): they can be found an studied 
For instance the nn system “exists” as a pole of the NN scattering amplitude fnn(k) or fnn(E)  
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This is not a very easy task, specially for A>2 but we have done it for 3n and 4n  



3n and 4n resonances 

Maybe n3 and n4 are not bound …. but where are they  ? 
 
We computed 3 and 4-n resonances solving full FY in the complex plane 

Phys. Rev. C71 (2005) 044004; nucl-th/0502037 Phys. Rev. C 72 (2005) 034003; nucl-th/0507022 early – it reaches its maximal value when W is reduced from ≈1060 MeV*fm to ≈ 720 MeV*fm. Then, once the
maximal value for its real part is reached, resonance trajectory have to move rapidly into 3-rd quadrant.

FIG. 6: Jπ = 3/2− three-neutron state resonance trajectory obtained when reducing the strength W of phenomenological
Yukawa-type force (open circles for CS and solid line+snowflake points for ACCC methods). Trajectory depicted by full circles
represents one obtained using CS, when reducing enhancement factor γ for 3P2 −3 F2 nn interaction . Trajectory depicted by
full squares is dineutron resonance path in 3P2 −3 F2 channel, obtained by enhancing nn-interaction in these waves. Presented
results are based on Reid 93 model.

In figure 7 we present 3n resonance trajectories only partialy without following them to their final positions,
when additional interaction is completely removed. The reason is that these positions are very far from bound
region, requiring many terms in Padé expansion to attain accurate ACCC predictions. Then one can imagine the
hypothetical scenario that these trajectories turn around and return to positive real parts; although we have never
encountered such trajectories in practical calculations we ignore if such trajectories can be in principal excluded by
rigorous mathematical arguments. Nevertheless we would like to stress that such developpment is very unlikely, in
particular due to the fact that we manipulate with purely attractive external force. Furthermore in order to get back
to fourth-energy quadrant resonance trajectory should exhibit very sharp behavior after leaving it – from Table V one
can see that larger part of trajectory is already depicted in 4-th quadrant – in contrary these trajectories continue
smoothly gaining in energy and do not show any signs of turning around after passing to third quadrant.

In this study we have deliberately omitted the use of realistic 3NF models. The reason is that such forces are
not completely settled yet. In addition, we should remark, that the UIX [37] 3NF acts repulsively for multineutron
systems [5]. More recent Illinois 3NF contains charge symmetry breaking (CSB) and considerably improves under-
binding problem of neutron rich nuclei present for AV18+UIX complect [38]. However even strongly CSB breaking
realistic 3NF should be by order weaker than the phenomenological one used by us to make three-neutron resonant.
The reason of weak 3NF efficiency in multineutron physics is that such force requires configurations when all three
neutrons are close to each other, whereas such structures are strongly suppressed by Pauli principle.

Finally, one can expect that enhanced (artificial) bound state - resonance pole relation is not unique. I.e. some
resonance can exist due to continuation of a bound state of the other symmetry, which is missed in our calculations.
To investigate such possibility we have chosen a resonance in Jπ = 3

2

−
state, obtained using help of phenomenological

3NF force eq.(12) having W = 360 MeV*fm. Then we gradually reduced W to zero, whereas at the same time at each
step increasing the enhancement factor for the 3P2-

3F2 channel from 1 to 3.7. Obtained trajectory of the resonance
we have traced in Fig. 8 (circles with the crosses) together with the resonance curves obtained with additional 3NF

9

energy part and a large imaginary one it would be difficult to be identified experimentally. Resonance should have a
rather small width Γ = −2Im(Eres) to produce a visible effect in the experimental cross section and a E = Re(Eres)
centered Breit-Wigner shape. At most it will give a weak enhancement in the cross section, hardly discernable from
the background and not necessary centered around the E = Re(Eres). This makes very doubtful the perspective of
physically observable tetraneutron resonances. Their eventual existence would imply a too strong modifications in
the present nuclear Hamiltonians. Should the recent claims of resonant tetraneutron be confirmed, our understanding
of nuclear forces will have to be significantly changed.

FIG. 6: Sensibility of the 2+ tetraneutron resonance trajectory with respect to nn P–waves. Solid line correspond to Reid 93
nn interaction and dashed line was obtained with nn P–waves enhanced by a factor γ=1.2

Our results are in qualitative agreement with findings of Sofianos et al. [10], where authors were able to determine
accurately tetraneutron resonance positions in third energy quadrant for positive parity states, however using S-wave
MT I-III potential. Due to small impact of P and higher nn interaction terms for tetraneutron S -wave models become
very appropriate to study this system.

IV. CONCLUSION

Configuration space Faddeev-Yakubovsky equations have been solved with the aim of determining the positions of
the four-neutron resonances in the complex energy plane.

Realistic Reid 93 nn interaction model has been used. A systematic study of four-neutron resonances have been
accomplished by first adding to the nuclear hamiltonian an attractive 4n force to artificially bind tetraneutron. The
trajectory of the energy eigenvalue is then traced as a function of the strength of the additional force until it is fully
removed.

Two methods, namely Complex Scaling and Analytical Continuation in the Coupling Constant, were employed to
follow these trajectories.

We proved in this way that 3- and 4-n are not bound … because they are elsewhere ! 
This was a real « tour de force » difficult to extend beyond A=4 



II. Introducing the “enhancement” factor 
If done at the two-body level it has the drawback of binding 2n  and open decay chanel 3n→n+2n  

Other - more accessible - approaches consists in binding the system by « brut force » 

III. Introducing three-neutron forces (TnI) 
Safer and numerically not very expensive if one takes hyper-radial dependence V(ρ) 

IV. Enhance only nn P-waves 
Thus keeping 2n unbound…but binding a P-wave states before 3n 

One can also imagine more  refined things like 
V. Studying dimer-dimer scattering 
To see whether or not they like to be together 

We have explored all of them in the A=3,4 cases 
None of them is fully satisfactory but they all can provide very useful indications 

VI. Confining the system in an OH trap 
and look for the increasing of the n’s binding energy as a funcion of N 



SOME RESULTS 



VI. Confining the system in an OH trap 

Neutrons in a OH trap . . .

We consider an OH trap with frequency ω and size parameter b =
√

h̄
mω

These parameters being frozen, we put on it 2n,3n,4n,. . . and we calculate
the internal energy (Jacobi coordinates) of the system

OH is the only external field in which ”internal” and ”center of mass”
energies can be properly separated.
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
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• In absence of n-n interaction the internal energies are simply
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N1 +
3
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 h̄ω +


N1 +
3
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 h̄ω + . . . +


NN +
3
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 h̄ω −
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NR +
3

2



 h̄ω

but can be obtained as well by solving the ”internal” problem, i.e.
pairwise OH with frequency

(

ω√
N

)

• By switching on Vnn we solve the internal problem with

Vij =
1

2
m





ω√
N





2

r2
ij + Vnn(rij)

• Care must be taken with symmetries and center of mass energies

For N=2,3,4 we are going to evaluate the effect of the n−n
interaction by comparing the purely OH energy ( E(N)

OH )

with the OH + Vnn ones ( E(N)
OH+nn )

1. Do neutrons like to be together ?

2. Is there any benefit when going from 2 to 4 ?

3. How does all that depend on the trap size b ?

Figure with NN example
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That’s very nice, but how to decide when n’s are bound by the Vnn and not by VOH ? 

N E0 B B

N

B

E0
E0 B B

N

B

E0
Ei B B

N

B

E0

b = 2 b = 3 b = 4
2 0+ 15.55 6.34 3.17 0.41 6.91 3.13 1.56 0.45 3.89 1.81 0.93 0.47

3 3
2
−

41.47 9.74 3.25 0.23 18.43 4.41 1.47 0.24 10.36 2.55 0.85 0.25
4 0+ 67.39 15.30 3.58 0.23 29.95 7.40 1.69 0.25 16.82 4.31 1.08 0.26

Clear indication that n’s like to be together,  
… once recovered form the N=3 “crisis” 
B/N(N=4) > B/N(N=2) ... > B/N(N=2)  pairing ! 
B4>2B2 



One way is to look at the wave function (density) 
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If n’s are bound by themselves their wf  has r<<bOH (ω-1/2) 



Another one is the B(b)  

If n’s are bound by themselves should be independent bOH (ω-1/2) 
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II. Enhancement factor 
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Makes a big jump when moving  
from N=2 to N=3 
Specially for 3He that becomes favoured 
(due to P-waves !!!) 
 
For N=4 both start decreasing 

The only question is to know, whether or not ηc(N) → 1 at large N  

NCSM should be able to treat N=6,8,10, … using Vnn or W(ρ)  
It may be enough to guess the result 
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The attractive pocket in 3He-3He potential is much more periferal 
The centrifugal term is smaller and P-wave effective potentials remain attractive 
 
They represent a 40% of the binding energy in He’s but only  3% in n’s N=4 (in OH) 



Conclusion (I) 

If the existence of bound 3n and 4 is excluded, the possibility larger bound neutron  
systems remains an open problem 
 
The most serious objection against larger clusters comes from the unbound n-matter   
However N+NNN models suffers from a lack of predictivity in n-rich nuclei 
For instance in He isotopes 
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Binding energy of He isotopes with NN interactions alone
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Traditional 3N forces suffer from “Sisyphe” effect… 

What is the reliability in the limit N → ∞ ? 
Better to approach the problem “from below” ! 
 
Here EFT can be of great help (if parameters can be fixed !)     

Conclusion (II) 



Conclusion (II) 

I could have some interest to study ηc(N) dependence beyond A=4 
NCSM seems the more apropiate technique  
  
The study must be done in parallel with He, for which we know the answer 
 
André, Etienne, Alfredo 
thanks for all your numerous works, and for this kind invitation to come here 
 
Still an effort ??? 


