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Atomic nucleus is in principle  
a complex system. 
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�  There is an inherent interest in the mechanism that 
describes the transition from quantum mechanics to the 
classical mechanics. 

�  What properties loss the system in this transition? 
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Abstract 
Sensitive dependence and chaos can occur in quantum mechanics. This is demonstrated 

by constructing a quantum mapping with a positive Liapunov exponent. 

Since the times of Poincare it is known that classical dynamical systems can exhibit 
exponential sensitivity on initial conditions [ 1,2]. In a system with exponential sensitiv- 
ity small errors in the initial conditions can lead to large observable consequences within 
finite intervals of time. Poincare was the first to appreciate that exponential sensitivity 
in a hamiltonian system can lead to very complicated dynamical behavior [ l-41. At a 
first glance the dynamics of such systems is indistinguishable from stochastic motion. 
But since the system trajectories are uniquely specified by the initial conditions, the time 
evolution of the system is deterministic and is best described by the term “deterministic 
chaos” [ 41. Research in nonlinear dynamics during the past three decades produced a 
host of examples for deterministically chaotic systems. It became clear that complicated 
systems are not necessary for chaos to emerge. In fact, chaos can be found in the sim- 
plest dynamical systems. Well-known examples are the driven pendulum [ 5 1, the double 
pendulum [ 6 1, and the hydrogen atom in a strong magnetic [ 7 ] or microwave field [ 8 1. 

With chaos in classical dynamical systems well established, tht question arises whether 
quantum systems are able to display exponential sensitivity and chaos. 

Towards the end of the seventies, Casati and collaborators focussed their attention on 
the investigation of the quantum mechanics of a classically chaotic system [9]. They 
chose the kicked quantum pendulum as their system of interest since its classical ver- 
sion is chaotic and its quantum propagator can be computed analytically over one cycle 
of the driving force. On the basis of the occurrence of classical chaos in this system, 
complicated quantum behavior was expected, if not the analog of classical deterministic 
chaos with exponential sensitivity in the wave functions. But instead of instabilities and 
chaos, the kicked pendulum showed orderly behavior and no sensitivity of the wavefunc- 
tions. Even more puzzling: the energy of the quantum kicked pendulum turned out to be 
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10 R. B&neI / Chaos in quantum systems 

bounded whereas the energy of its classical counterpart exhibits a diffusive growth due to 
the underlying classical chaoticity of the motion. This landmark result meant that chaos 
in the wavefunctions of a quantum system tends to be suppressed by quantum interfer- 
ence effects. Similar observations were reported for other quantum systems [8,10,11]. 
Shortly after the first reports of the quantum suppression of chaos, Fishman, Grempel 
and Prange [ 121 showed that this effect can be related to Anderson localization [ 137, a 
destructive phase interference effect which can occur in strongly disordered solids. 

Following this “negative” result, a shift in focus occurred in quantum chaos research. 
Instead of searching for exponential sensitivity and chaos on the quantum level, most 
of the research work concentrated on the investigation of the manifestations of classi- 
cal chaos in the energy spectra of autonomous quantum systems, or in the quasi-energy 
spectra [ 141 of periodically driven systems. Berry called this type of research “quantum 
chaology” [ 151. Currently it defines the main stream of quantum chaos research. One of 
the most important results established within the frame work of quantum chaology is that 
the (quasi-) energy statistics of classically chaotic quantum systems are well modelled 
by certain random matrix ensembles which were first considered by Wigner for appli- 
cation in nuclear and atomic physics [ 16,171. This correspondence was then extended 
to chaotic scattering systems [ 18 ] which turned out to be well modelled by Dyson’s cir- 
cular ensembles [ 191. It was shown [ 18,201 that the cross sections of chaotic scattering 
systems behave in a way reminiscent of Ericson fluctuations [ 2 1,221 which can occur in 
heavy-ion reactions. 

The essence of classical chaos is often illustrated with the help of mappings. Mappings 
are generated naturally in a dynamical system by means of Poincare sections (see, e.g., 
ref. [ 23 ] ) . Mappings derived from actual hamiltonian systems, however, are usually too 
complicated to be illuminating. The central points, however, are easily demonstrated with 
the help of formal mappings between subsets of the two-dimensional euclidean plane. One 
of the most intensively studied mappings is the “cat map” [23-251, denoted by M and 
defined as 

M: 
1 1 

rn+l = ( 
1 2 

> rnY n = 0, 1,2,. * . ) 

where r = (x, y ) denotes a two-component vector whose components x and y are un- 
derstood to be taken modulo 1. In order to make contact between ( 1) and a dynamical 
system, one may identify x and y with the position and momentum of a particle and the 
discrete index n may be thought of as arising from strobing the system at discrete and 
equidistant intervals of time. Thus, the mapping M is a model for the time evolution 
of a dynamical system from one strobing point to the next. Given the initial condition 
r0 = (x0, yo 1, the time evolution of M is unique; the system is deterministic. But this 
does not mean that the time evolution of the system can be easily predicted. This has 
several reasons. (i) It is possible to prove that M has no explicit analytical solution of the 
form r, = f (n, ro ) which would work for all n. In other words, the only way of obtaining 
the result r,, for given t-0 is to iterate the mapping. Systems of this kind are said to possess 
nontrivial algo~thmi~ complexity [25,26]. To be sure, for any given and finite integer 
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Fig. 2. Left panel: exponential of entropy (upper part), and the distribution of 1s = (expS)/0.48N for 2+0 states calculated with the full 
Hamiltonian of the model (lower part); right panel: the same quantities for the degenerate model with eU = 0. 

the other hand, for degenerate single-particle orbitals 
(upper and lower panels on the right side), the distri- 
bution of localization lengths is more narrow and the 
full chaotic limit is reached. This is related to the fact 
that the mean field in general tends to smooth out the 
chaotic aspects of many-body dynamics [ 231. 

The number of principal components (4) computed 
for the same basis behaves in a similar way gradually 
increasing from the edges of the spectrum to the mid- 
dle, Fig. 3 (left). Even the most complicated states are 
shifted down from the GOE limit of complete mixing. 
However, for the ratio ( exp s” ) / (NPC) a one obtains 
the results in the right part of Fig. 3. For a Gaussian 
distribution of amplitudes Cf of a given eigenvector 
I(Y), the ratio (exp S) /(NPC) of average quantities 
would be given by the universal (N-independent) ran- 
dom matrix result equal to 1.44 (solid line). The flat- 
tened region close to this numerical value indicates 

that our large deterministic Hamiltonian matrix actu- 
ally exhibits self-averaging (ergodic) properties and 
the chaotic dynamics, even if not complete, extends 
far beyond the region nearby the maximum of the in- 
formation entropy. 

In a given basis, the eigenstates are characterized 
by a typical delocalization length N”/N < 1 and by a 
Gaussian distribution of the amplitudes Cf with zero 
mean value and variance (N”) -I which agrees with 
statistical spectroscopy [ 7,9]. This length cancels in 
the ratio exp( Sa) /(NF’C)a for the majority of states 
in the middle of the spectrum. The flatness of the ratio, 
as compared to strong a-dependence of exp( Su ) and 
(NPC)” separately, indicates the existence of the local 
chaotic properties scaling with Na. The edge regions 
with this ratio larger than 1.44 clearly correspond to 
relatively weakly mixed states with a reduced NPC. 
We note the very narrow dispersion of points in Figs. 

The degree of complexity of each state |α> can be measure of several ways. 
For example the information entropy for 12 particles in sd shell JpT=2+ 0 

Where the state and the entropy are: 
! = c!k

k
! k

S! = ! ck
! 2
ln

k
" ck

! 2

Information entropy, chaos and 
complexity of the shell model 
eigenvector, Vladimir Zelevinsky, Mihai 
Horoi, B. Alex Brown, PLB 350, (1995), 
141-146.  
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! = cn un
n
"

The principal property of a quantum state, is its linearity thats  
originates the spectral descomposition 

If we want to know the nth energy of such state, the result is dependent of  
the  mixing degree of the wave function. If we have pure states:   

Hn ! = En cn un
n
"

= Hn un = En un

Then, the energy is a good quantum number.    
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… but, if the wave function is a mixed state on the  basis, 

Hn ! = En !

where, the energy is now an average of the energies of a subset  
of the basis. The deviation of the central value comes from the mixing  
procecess in the formation of such state. How big is this subset, give  
us an idea of how big is the  mixing status. This mixing comes from the  
nature of the interactions between themselves.  
 
The most used classical limits are: 
 
-Thermal       è   Bunched             è    Bose-Einstein        1/f2 
-Poisson       è Random             è  Poisson     1/f0 
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In order to study the transition from quantum to chaos, we select  
the 48Ca nucleus, that has been very investigated in quantum chaos* 
We have 1627 |3i

+>  states; i=1,1627. 
Antoine* solve the Scrhödinger equation for 8 particles over a core of  
40Ca, using the interaction 
 

Quantum chaos in A=45-50 atomic nuclei, E. Caurier, J.M.G. Gómez, V.R. Manfredi 
L. Salasnich, Physics Letters B 365 (1996) 7-11. 
* Antoine code. E. Caurier Strasbourg, 1989. 

Ĥ = Ĥm + ĤM

In this work we use the following two body interactions.  

Ĥ = Ĥm + ĤKB3

Ĥ = Ĥm + ĤTBRE

Ĥ = Ĥm ! !Q̂•Q̂

Ĥ = Ĥm ! !Q̂•Q̂! gP̂• P̂
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In each energy sequence we use the power spectrum tool* 

1/f 
1/f2 

Ĥ = Ĥm + ĤKB3

Relaño A, Gómez J M G, Molina R A, Retamosa J and Faleiro E 2002 Phys. Rev. Lett. 89 244102 
 
Faleiro E, Gómez J M G, Molina R A, Munñoz L, Relaño A and Retamosa J 2004 Phys. Rev. Lett. 
93 244101.  



10/10/12 
Shell Model as a Unified View of Nuclear Structure. 

Strasbourg, October 8-10,  2012 11 

  

The most of nuclear energies have 1/f noise. The diagonal matrix elements follows  
a 1/f2 noise. 

1/f 
1/f2 

n 

Ĥ = Ĥm + ĤKB3
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For the goal of obtain information about the transition we change the KB3 
interaction for one schematic: g=0.46 

Ĥ = Ĥm ! !Q̂•Q̂! gP̂• P̂
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For the goal of obtain information about the transition we change the KB3 
Interaction for one schematic: g=0.46 

Ĥ = Ĥm ! !Q̂•Q̂! gP̂• P̂

Complexity 
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Comparing the wavefunction of leves at the extremes with levels in the center of  
the sequence (in the Lanczos basis), for the the case most similar to the diagonal 
matrix elements:   
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Ĥ = Ĥm ! !Q̂•Q̂! gP̂• P̂
with! = 0.005,g = 0.0

1 

500 

1627 

800 



10/10/12 
Shell Model as a Unified View of Nuclear Structure. 

Strasbourg, October 8-10,  2012 15 

-0.4

-0.2

 0

 0.2

 0.4

-30 -20 -10  0  10  20  30  40  50  60

am
pl

itu
de

component

alpha=1

’ca48esden_qq0p21_pp_0.45.V’

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  50  100  150  200  250  300

am
pl

itu
de

component

alpha=1627

’ca48esden_qq0p21_pp_0.45.V’

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0  200  400  600  800  1000  1200  1400  1600  1800

am
pl

itu
de

component

alpha=500

’ca48esden_qq0p21_pp_0.45.V’

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0  200  400  600  800  1000  1200  1400  1600  1800

am
pl

itu
de

component

alpha=800

’ca48esden_qq0p21_pp_0.45.V’

Comparing the wavefunction of energy leves at the extremes with those in the center 
of the sequence (in the Lanczos basis), for the the case :   
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The quantity of mixed states are bigger in the case with stronger quadrupole  
 interaction in comparison with  the weak one. However the extreme energy levels 
has changed slowly. We could say then, in the level sequency, we have two statistical  
behaviors: 
 
 
 
 
Complexity:    high statistical mix 
 
Order:             low statistical mix  
 
 
 
We can to see what happen in the convergence processes in the Antoine 
calculation.The problem of obtain both eigenvalues and eigenvectors is 
solved in Antoine through the diagonalization of a tridiagonal matrix using 
the iterative Lanczos method. In each iteration Antoine obtain one 
eigenvalue and one eigenvector. When we put all energies together, we 
have: 



17 Shell Model as a Unified View of Nuclear Structure 

Antoine use Lanczos for the diagonalization processes. This is a iterative 
method. We can to get one sight about the mechanism of interaction 
associated with the chaos  
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Cómo evoluciona esa dispersión? 
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Another detail. The quadrupole interaction mix states of wide 
regions. This detail come from χ=0.21 



Caso de QQ pequeño (0.01) 
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For a weak QQ interaction we have: 



Caso de QQ pequeño (0.01) 
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For a weak QQ interaction we have: 

! = 0.01
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The interaction QQ is there, but acts locally. 

! = 0.01
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The comparison between the two distribution of energy levels with weak and stronger  
quadrupole interaction shows: 
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As we are seen, the energy distribution is fractioned when we use a  
weak QQ interaction. 
…However, this fractioned interaction reminds us an interference pattern. 
In a constrained quantum system each particle (with or without mass)  
can be represented by standing waves when the wavelenght accomplish  
the border conditions. This is the origin of the gaps. Each state can develop  
Interference with itself. When the state is a pure state. The QQ interaction  
get the complexity. 
If we see the intermediate distributions:  
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Its possible also, to obtain the correlation degree, using the visibility. 

V =
Imax ! Imin
Imax + Imin

"C
38 2 Principles of Interference

Fig. 2.2 Illustration of the influence on the spatial coherence (on the contrast C) of h, the distance
between the holes, and a, the semi-diameter of a circular source, in the Young’s two-hole experi-
ment, assuming d D 1 m (distance of the source) and a wavelength of 600 nm. For a between
0:1 and 0:4 mm (top simulation), h D 1 mm; for h between 1 and 4 mm (bottom simulation),
a D 0:1 mm. The corresponding intensity curves of the two beam interference fringes obtained
from the circular source changes with the various spacings of holes and the size of the holes, being
zero when ‘a0 ! ‘h0 D 0:3 (constructive fringe for ‘a0 ! ‘h0 < 0:3 and destructive fringe for
0:3 < ‘a0 ! ‘h0 < 0:6). Courtesy: Luc Damé

The function, !.r1; r2; "/, can be approximated to !.r1; r2; 0/e"i2! N"# for
" ! "c . The exponential term is nearly constant and !.r1; r2; 0/, measures the
spatial coherence. Let ˆ.r1; r2/, be the argument of !.r1; r2; "/, thus,

I.r1; r2; "/ D I1.r; t/ C I2.r; t/ C 2
p

I1.r; t/
p

I2.r; t/

" <
h
j!.r1; r2; 0/j ei Œˆ.r1;r2/"2! N"#$

i
: (2.24)
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spectrum must have level repulsion. If this condition is
not fulfilled, degeneracies (not detected by the Lanczos
method), or semi-degeneracies (leading to strong fluctua-
tions) will make it impossible to define a canonical form.
Therefore, it is here that the condition of good quantum
numbers comes in.

The rank dependence is crucial; e. g., for GOE matri-
ces the equivalent of Eqs. (5) is Hi i = 0 and Hi i+1 =
√

1 − i/d (sic). (The cherry on the CAT cake)

The behaviour of the matrix at the origin depends on
the pivot. The only general statement is that Hi i+1 must
be (O ≡ of order) O(σ) at the origin and raise to reach
the nib line after O(N) iterations. If the first diagonal
is taken to be the lowest unperturbed state, or chosen
variationally, it will be at an energy O(N) below the
log line and raise to reach it after O(N) iterations. It
seems a rather general fact that for such “good” pivots,
diagonals and off-diagonals reach their respective lines
in ≈ N/2 iterations [7,8]. It goes without saying that
the correct descriptions of low-lying states and strength
functions hinges on a good description at the origin. The
contribution of Eqs. (5) is nonetheless essential: trun-
cated calculations will have smaller σ and the nib line
will be lower. As a consequence, the ground state energy
will not converge to the correct value and the density
of states that determine the final aspect of the strength
functions will be badly missed [8].

Eqs. (5)—eventually supplemented by the rapid raise
at the origin—define an integrable problem, leading to a
spectrum of locally equidistant levels (picket-fence) and
locally uniform strength distributions. When fluctua-
tions are switched on, the level spacings can be expected
to follow a Wigner law, and the strengths a Porter-
Thomas distribution [2]. To put it in other words: the
system becomes chaotic and the strength is localized.

Eqs. (5), duly “dressed”, amount to a general but con-
strained Anderson model, in which constants are replaced
by log and nib functions, while behaviour at the ori-
gin and fluctuations (the dress) must be characterized
in terms of properties of the Hamiltonian. It is likely
that the large oscillations, O(N) steps near the origin—
as in Fig. 1—depend both on the pivot and on “details”
of the Hamiltonian. Then, secular trends take over: fluc-
tuations in the diagonals are about double that of the
off-diagonals, and both seem to follow a random walk
in which—at each step—it is more probable to keep the
same direction than to reverse it.

Perfect dressing amounts to exact solutions, but model
dressing is also possible and can be quite instructive.

For level densities, fluctuations matter less and it is ob-
vious that the digonalization of the matrices defined by
Eqs. (5) will yield densities very close to the exact ones.
It is perhaps not so obvious that CAT has a corollary:

CAT corollary Level densities at fixed quantum num-
bers are binomial.

The checks are fully convincing for all the calculated
cases , except when the dimensionalities become very
small (d ≈ 100). Fig. 4 is an example.
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FIG. 4. Exact level densities for (fpgd)8, J = 6 compared
with the binomial ones. Parameters from Fig. 3, treated as
explained in [11, Eq. 5] (d0 = 1)

The only significant problem is that the position of the
ground state—which depends critically on the behaviour
of the matrix at the origin—is not predicted with suffi-
cient accuracy for spectroscopic purposes.

It should be noted that in Fig. 4 an Edgeworth cor-
rected Gaussian [9] works as well as the binomial [10].
As explained after Eq. (8), binomials and Gaussians—
and a fortiori Edgeworth corrected ones—can be close
for the small N accessible to simulations. But not in
general.
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FIG. 5. Level densities for (fpgd)8, J = 0, 12. The legend
indicates the order in which ρJ appear as dJ increases (full
lines) or decreases (dashes)

For (fpgd)8, the calculated multimodal total density,
ρm = d−1

∑

(2J +1)ρJ , turns out to be as well described
by a single binomial as the unimodal ones. The gen-
tle buildup shown in Fig. 5 helps in understanding what
happens. For 48Ca the situation is the same. We have

3

Canonical form of Hamiltonian matrices, A. P. Zuker, L. Waha Ndeuna, F. Nowacki,  
E. Caurier, Phys. Rev C, 02130R, (2001) 
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We can to conclude that the nonintegrable interaction destroys this  
interference,remaining some fluctuations. 

Are these fluctuations related with the quantum fluctuations? 
Because the energy series have 1/f noise its possible that the  
energy distributions too.   

The 1/f noise have still information. The question is, information  
about what? Could be about of: 
-The chaotic processes, like the complex dynamics (billiards with protons  
and neutrons, etc.) 
-The information of an almost lost coherence. 
-?   

A system which state is now a statistical mix of the basis state, can  
be considered classical because are loss its principal quantum  
properties. This state cannot to have self interference or entanglement 
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This behavior in the distribution of states remember us the interference of the light  
with different spectral width: from coherent to thermal statistical. 
Quantum pure states can produce energy gaps or interference among identical states  
and self-interference. 
 In the frame of this comparison, the 1/f noise or chaos come from the memory of the  
lossed coherence of pure states. Then, we can think about of certain  coherence 
length : 

Lc !
1

"!E

where ΔωE is the spectral width, proportional to the number of basis states involves  
in the fluctuations of the mean value of E.  
 
 
We take the auto-correlation function of one energy serie with itself displaced n 
positions. 

C(Ei,Ej ) =
! (Ei,Ej )
! (Ei )! (Ej )
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Ĥ = Ĥm ! !Q̂•Q̂
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Sensitivity 
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Anchura !=0.01 
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Scale Invariance 

Ĥ = Ĥm + ĤTBRE

! = 0.01
! KB3 = 0.6



…su espectro de potencias 
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β=−1.9 



Anchura !=0.01 
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! = 0.01



La su distribución… 
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! = 0.01



…su espectro de potencias. 
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β=−1.18 

! = 0.01
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CONCLUSIONS 

-In shell model calculations for 48Ca (3+), we have two statistical limits:  
quantum and chaos. 
-The transition from quantum to chaos comes from the loss of the  
quantum coherence. 
-The transitions comes from the configurations mixing originated by  
the non-integrable interactions. 
-The memory of this quantum coherence can be reinterpreted as  
as the origin of chaotic fluctuations.  
-If you have a non integrable interaction, then it will be appears at  
Some scale, showing 1/f noise. 
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Finally, an experiment. We propose one experiment with light where  
the correlation is almost visible. A laser He-Ne cross a pin-hole. The  
diffraction pattern is:  

A detector is moved along of the diffraction pattern counting photons.  

Incoherent zone? 
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! = !1.07
1/f noise 

The fluctuations can be interpreted as the memory of the spatial coherence. 


