Status of current and future neutrinoless double-beta decay experiments

Frédéric Perrot CENBG / IN2P3 / Bordeaux University

Workshop "Shell Model as a Unified View of Nuclear Structure" IPHC, Strasbourg, 8-10 October 2012

- Neutrino physics and double beta decay process
- General considerations in order to built a double beta decay experiment
- Status of some current/future double beta decay experiments
- Summary and outlook

Neutrino physics and double beta decay process

Neutrino Physics

What is known:

- 3 flavors of neutrinos ν_e, ν_µ, ν_τ that can oscillate from one to another family (ν_e ↔ ν_µ, ν_µ ↔ ν_τ...)
- \rightarrow mixture between the flavor and the mass eigenstate of neutrinos

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} \quad \text{PMNS matrix}$$

- Since the end of 90's: precision measurements of mixing angles θ_{12} , θ_{23} and square mass difference Δm^2 (SuperKamiokande, KamLAND, SNO,...)
- Recently: first measurement of θ_{13} =8.8° (Daya-Bay, 2012)
- Oscillations prove a non-zero mass for neutrinos

Neutrino Physics

What is still not solved:

- Nature of neutrinos: Dirac ($v \neq \overline{v}$) or Majorana ($v = \overline{v}$) ?
- Absolute neutrino mass scale ?

Neutrino Mass Constraints

 Cosmological constraints on the sum of the neutrino mass eigenstates:

$$\Sigma = \sum_{j} m_{v_{j}} < 0.44 - 0.76 \ eV$$

Neutrinoless double beta decay process sensitive to the effective neutrino mass

$$< m_{\beta\beta} > = \left| \sum_{j} m_{j} U_{ej}^{2} \right| = m_{1} \left| U_{e1} \right|^{2} + m_{2} \left| U_{e2} \right|^{2} e^{i\phi_{1}} + m_{3} \left| U_{e3} \right|^{2} e^{i\phi_{2}}$$

 ϕ_1 , ϕ_2 : Majorana phases

Double beta decay: $2\nu\beta\beta$ and $0\nu\beta\beta$

- Emission of 2 electrons and 2 anti-neutrinos
- ΔL=0: conservation of the leptonic number
- Process allowed by the Standard Model
- T_{1/2} measured at 10¹⁸ 10²² yr

- Emission of 2 electrons only
- ΔL=2: non-conservation of the leptonic number
- Process forbidden by the Standard Model
- T_{1/2} expected > 10^{25} yr

Double beta decay: $2\nu\beta\beta$ and $0\nu\beta\beta$

$2\nu\beta\beta$ process

$$\frac{1}{T_{1/2}^{2\nu}} = G_{2\nu}(Q_{\beta\beta}^{11}, Z) \times \left| M_{2\nu} \right|^2$$

- G_{2v} : phase space factor (wellknown)
- M_{2v} : nuclear matrix element

Measurement of $T_{1/2}(2v)$:

a direct access to the nuclear structure

Recent result for $^{136}\text{Xe}~2\nu\beta\beta$ decay (2011):

- Exp: M_{2v} (¹³⁶Xe) =0.19(2) MeV⁻¹ (EXO-200)
- Shell Model: M_{2v}(¹³⁶Xe) =0.25 MeV⁻¹

E. Caurier, F. Nowacki, A. Poves, Phys. Lett. B711, 2012

Ονββ process

$$\frac{1}{T_{1/2}^{0\nu}} = G_{0\nu}(Q_{\beta\beta}^5, Z) \times \left| M_{0\nu} \right|^2 \times \left| (m_{\beta\beta})^2 \right|^2$$

- G_{0v} : phase space factor (wellknown)
- M_{0v}: nuclear matrix element
- $< m_{\beta\beta} >:$ effective neutrino mass

Measurement of T_{1/2}(0v) : a direct access to the effective neutrino mass!

But need to know NME precisely...

$0\nu\beta\beta$ process and neutrino mass

If neutrino is a Majorana particle, $0v\beta\beta$ process will test soon the inverse hierarchy of the neutrino mass

General considerations in order to built a double beta experiment

Origin of the double beta decay process

Example of the isobaric chain A=136

- Pairing interaction between nucleons (even-even nuclei more bound)
- 136 Xe and 136 Ce are stable against β decay but unstable against $\beta\beta$ decay ($\beta^{-}\beta^{-}$ for 136 Xe and $\beta^{+}\beta^{+}$ for 136 Ce)

There are 35 $\beta^{-}\beta^{-}$ and 6 $\beta^{+}\beta^{+}$ emitters in the nature

$0\nu\beta\beta$ observables

$$^{136}_{54}Xe \rightarrow ^{136}_{56}Cs + 2e^{-1}$$

• Energy sum of the 2 electrons for $0\nu\beta\beta$ process \rightarrow Peak at $Q_{\beta\beta}$

- Angular distribution of the 2 electrons
- Gamma emission in case of $\beta\beta$ decay in excited states
- Identification of daughter nucleus

Question of background

laboratory

- Natural radioactivity (radioactive chains from²³⁸U and ²³²Th) : necessity to select the materials
- Background from the $2\nu\beta\beta$ decay itself: good energy resolution and isotope choice

Natural radioactivity

Main background: ²³²Th and ²³⁸U natural radioactive chains

What to do against?

- To purify the ββ sources
- To control the radiopurity of the surrounding materials
- To prevent Radon diffusion from outside using efficient barriers or traps
- To use tagging/identification techniques to distinguish between α , β and γ and single site (SS) or multiple sites (MS)

Isotope choice

Status of neutrinoless double beta decay experiments

How to build a $0\nu\beta\beta$ experiment

Experimental approach

Tracko-calo Source ≠ Detector

Advantages:

- Full event topology information
- Clear signature of $0\nu\beta\beta$ event
- Can probe different mechanisms
- Isotope flexibility

Elements of both Gazeous Xe TPC Pixelated CdZnTe

Calorimeter Source = Detector

Advantages:

- High energy resolution
- High efficiency
- Compact

Techniques:

- Semiconductor
- Bolometer
- Scintillator

Current and future experiments

Experiments in the world

Status of some current/future 0vββ experiments

Tracko-calo experiments:

NEMO3-SuperNEMO (¹⁰⁰Mo, ⁸²Se and others)

NEXT: optical gazeous TPC (¹³⁶Xe)

supernemo

NEMO

<u>N</u>eutrino <u>E</u>ttore <u>M</u>ajorana <u>O</u>bservatory

- ββ isotope: ¹⁰⁰Mo,⁸²Se and 5 others for NEMO3 and ⁸²Se for SuperNEMO
- Technique: tracko-calo
- Data taking: 2003-2010 (NEMO3)
- Location: LSM (Modane, France)

Detector design:

- Source: isotopic foils
- Tracking detector: drift wire chamber in Geiger Mode
- Calorimeter (E): plastic scintillators with low-background PMTs
- Magnetic field: to distinguish electron from positron

NEMO3

Unique feature Measurement of all kinematic parameters: individual energies and angular distribution

10th October 2012

NEMO3: 2vββ results (not final)

10th October 2012

NEMO3: 0vββ Results (not final)

From NEMO3 to SuperNEMO

20 sectors: 10 kg of 7 isotopes

20 planar modules, each 5-7 kg of isotope Can do different isotopes & locations

supernemo

SuperNEMO R&D results

Tracker

Size cell: l=3.7 m, φ=44 mm Transverse spatial resolution: 0.7 mm, Longitudinal spatial resolution: 1cm Efficiency > 98%

Radon concentration line for tracker gas Must be sensitive to 0.15 mBq/m³ in Radon

collaboration

SuperNEMO R&D results

BiPo detector

Goal: to measure the radiopurity of the $\beta\beta$ foil in 214 Bi (238 U) and 208 Tl (232 Th)

Technique: measure the e/α coincidence in plastic scintillators

Sensitivity achieved in 6 months $A(^{208}TI) \le 2 \ \mu Bq/kg$ $A(^{214}Bi) \le 10 \ \mu Bq/kg$

SuperNEMO schedule

- Construction started in the laboratories
- Installation and commissioning of the demonstrator at LSM Fréjus in 2013-2014
- Data taking in 2015
- No background expected
- Sensitivity after 2 years: $T_{1/2}$ > 6.6 10^{24} y and $<\!m_{\beta\beta}\!>$ < 0.2-0.4 eV
- Full SuperNEMO detector with 100kg of ⁸²Se and 5 years data taking:

 $T^{}_{1/2}\!>\!1.0\;10^{26}\,\text{y}$ and $<\!m^{}_{\beta\beta}\!>\!<0.04\text{-}0.11\;\text{eV}$

Neutrino Experiment with a Xenon TPC

- ββ isotope: ¹³⁶Xe
- Technique: optical TPC (tracking+calorimeter)
- Completion of R&D
- Location: LSC lab. (Canfranc, Spain)

Detection principle:

- TPC filled with gazeous Xe at 10-15 bars
- up to 150 kg of enrXe (90.9% enrichment)
- Use ionization and excitation
 - excitation: prompt UV emission (scintillation) used as a start t₀
 - ionization: converted (with high E field) in scintillation light and used for energy measurement
 - \rightarrow ElectroLuminescent (EL) TPC

NEXT-100

Recent progress

- 0.5-1% FWHM at $Q_{\beta\beta}$ demonstrated
- Tracking and event topologies underway

Sensitivity expected:

• Assuming 100kg of ¹³⁶Xe and 5 years operation:

 $T_{1/2}(0v) > 6.10^{25} \text{ yr } (90\% \text{ C.L.})$ $< m_{BB} > < 0.1 \text{ eV}$

Schedule:

- 2013: NEXT-100 construction
- 2014: NEXT-100 commissioning with non-enriched Xe
- 2015: start physics run with enriched Xe

Time Projection Chamber of the NEXT-DEMO prototype

Calorimeter experiments:

Semiconductors: GERDA (⁷⁶Ge)

Bolometer: CUORE (¹³⁰Te)

Inorganic scintillator: CANDLES III (⁴⁸Ca)

Scintillator: EXO-200 and KamLAND-Zen (¹³⁶Xe)

⁷⁶Ge Ionisation Detectors

Advantages:

- Well-known technique (High-Purity Germanium)
- Very good energy resolution (0.16% at $Q_{\beta\beta} = 2038$ keV, i.e. 3.3 keV)
- Direct test of Klapdor claim (same isotope): $\langle m_{\beta\beta} \rangle = 0.24-0.58 \text{ eV}$

Disadvantages:

- Difficult to discriminate between electron (single site) and γ (multisite) events
- Complex backgrounds (e.g. cosmogenics)

2 projects:

- GERDA experiment running since Nov. 2011
- MAJORANA experiment in completion of R&D phase

<u>GER</u>manium <u>D</u>etector <u>A</u>rray (installed in Gran Sasso):

- bare Ge-diodes array immerged in liquid argon (LAr)
- shielding (high-purity LAr + H_2O)

GERDA

GERDA

GERDA Phase I

Phase I (started in Nov. 2011)

- 14.6 kg of ^{enr}Ge (86% of ⁷⁶Ge) from previous experiments (HM and IGEX)
- 7.6 kg of ^{nat}Ge from GTF

GERDA

Q₆₋₆₀₀

Phase I (to be completed by early 2013)

- Region of interest (2038 ± 20 keV) is blinded
- Background Index (BI) is 0.02 count/keV/kg/year (without PSA)
- Problem of the ⁴²Ar background to be solved

Phase II (start by spring 2013)

- 40 kg of ^{enr}Ge
- P-type detectors and R&D with Majorana
- Expected BI: 0.001 count/keV/kg/year
- Sensitivity (3 years):

 $T_{1/2}(0v) > 2.10^{26} \text{ y}, < m_{\beta\beta} > < 0.11 \text{ eV}$

Phase III

- Goal of the ton scale of enrGe joint with Majorana

42Ca

Less than 1 background event

expected in 3 years!

<u>C</u>ryogenic <u>U</u>nderground <u>O</u>bservatory for <u>R</u>are <u>E</u>vents

- $\beta\beta$ isotope: ¹³⁰Te ($Q_{\beta\beta}$ =2527 keV)
- Technique: calorimeter (bolometer)
- Completion of R&D
- Location: LNGS lab. (Gran Sasso, Italy)

Detector and cryostat

TeO₂ crystals cooled down to

10mK with He in a copper cryostat Isotopic natural abundance of ¹³⁰Te: 34.1% (no enrichment!)

Bolometric technique

- TeO₂ absorb energy deposited by particle
- Energy E registered by a thermistor (NTD Ge) as T increase
- Signal: ΔT=E/C, C thermal capacity
- Need low T~mK
- Very good energy resolution: ~5keV at $Q_{\beta\beta}$ (2527 keV), i.e. FWHM/E=0.2%

Scaling of the CUORE project

1) Cuoricino: CUORE demonstrator (2003-2008)

- 1 tower, 62 crystals, 11.3kg of ¹³⁰Te
- Achieved background: 0.169 cts/keV/kg/yr
- Sensitivity achieved (90% C.L.):
- $T_{1/2}(0v) > 2.8 \times 10^{24} \text{ yr}, < m_{\beta\beta} > < 0.30-0.71 \text{ eV}$

2) CUORE-0 (2012-2014)

- 1 of the 19-tower Cuore assembly, 52 crystals, 11kg of ¹³⁰Te
- Control detector-production chain
- As stand alone experiment: improve background down to 0.11-0.05 cts/keV/kg/yr

3) CUORE (2014-2019)

- 19 towers, 988 crystals, 206 kg of ¹³⁰Te
- Goal background : 0.01 cts/keV/kg/yr
- Sensitivity expected with 5 years running (90% C.L.)
- $T_{1/2}(0v) > 1.6 \times 10^{25} \text{ yr}, < m_{\beta\beta} > < 0.04-0.09 \text{ eV}$

• CANDLES

<u>CA</u>lcium fluoride for studies of <u>N</u>eutrino and <u>D</u>ark matters by <u>L</u>ow <u>E</u>nergy <u>S</u>pectrometer

- $\beta\beta$ isotope: ⁴⁸Ca (Q_{$\beta\beta$}=4.27 MeV)
- Technique: calorimeter (scintillator)
- Data taking: since June 2011
- Location: Kamioka mine (Japan)

Detector design of CANDLES III:

- 96 CaF₂ crystals (10x10x10cm³): 305 kg
- only 0.3kg of ⁴⁸Ca (0.187% abund.)
- CaF₂ immerged in liquid scintillator:
 - 4 π active shield
 - passive shield
- distinguish $\beta\beta$ signal in CaF₂ (slow scintillation component) from muons and ext. γ/β in LS (fast component)

Previous experiment: ELEGANT VI $T_{1/2}(0v) > 5.8 \times 10^{22}$ year (90% C.L.) $< m_{\beta\beta} > < 3.5-22$ eV

CANDLES III

CANDLES I : background rejection (proof of principle)

CANDLES II : prototype with 2 PMT 15"

CANDLES III: start of the measurement in June 2011

CANDLES Futur to reach $T_{1/2}(0v) > 10^{26}$ years:

- 1st step : from 300 kg to a few ton
- 2nd step : ⁴⁸Ca enrichment from 0.19% to 2%

Enriched Xenon Observatory

- $\beta\beta$ isotope: ¹³⁶Xe (Q_{$\beta\beta$} =2458 keV)
- Technique: calorimeter (scintillation)
- Data taking: since May 2011
- Location: WIPP lab. (USA)

Background reduction:

- Lead shield
- 4 plastic scintillators (muon vetos)
- 700m overburden (1600 m w.e.)

Detector design:

- TPC filled with Liquid Xenon (LXe)
- 175 kg of ^{enr}Xe (80.6% of ¹³⁶Xe)

- Use of both ionisation and scintillation
- \rightarrow discrimination of α from β/γ
- Drift time measurement
- \rightarrow position reconstruction (18mm in XY and 6mm in Z)
- \rightarrow distinguish SS (β , $\beta\beta$) from MS (γ 's)

events

EXO-200 : first $2\nu\beta\beta$ half-life of ¹³⁶Xe

- Rejection of surface contamination
 → definition of a fiducial volume (56% of the total LXe volume)
- Active mass of ¹³⁶Xe : 98.5 kg
- 22000 2vββ events measured above
 0.7 MeV (S/B ratio ~10)

 $T_{1/2}(2v)=[2.23\pm0.02(stat)\pm0.22(syst)].10^{21} \text{ yr}$

arXiv:1205.5608 (May 2012)

EXO-200: limit for $0\nu\beta\beta$ half-life of ¹³⁶Xe

- ¹³⁶Xe: Q_{ββ} =2458 keV
- Energy resolution: 4.5% at $Q_{\beta\beta}$
- Observed background around the $0\nu\beta\beta$ region of interest: 5 events at 2σ
- \rightarrow BI: 0.0015 cts/keV/kg/yr (within specs!)

$$T_{1/2}(0v) > 1.6 \times 10^{25} \text{ yr} (90\% \text{ C.L.})$$

KamLAND-Zen

KamLAND Zero neutrino experiment

- ββ isotope: ¹³⁶Xe
- Technique: calorimeter (LS)
- Data taking: since Oct.2011
- Location: Kamioka mine (Japan)

Detector design:

- Inner balloon (R=1.54m) filled with 13t
- of Xe-loaded Liquid Scintillator (LS)
- High solubility of Xe gas in LS
- 2.5% weight of ^{enr}Xe (~300 kg of ¹³⁶Xe)

Background reduction:

- Outer LS sphere (R=6.5m, 1000t): active shield against ext. γ 's and int. γ 's
- Water tank (3200t): neutron moderation and muon Cherenkov detector
- High purification of LS in ²³⁸U/²³²Th and daughter nuclei

KamLAND-Zen: 2vββ half-life of ¹³⁶Xe

- Fiducial volume with R=1.2m (43% of the inner balloon volume)
- Active mass of ¹³⁶Xe : 129 kg
- 35500 $2\nu\beta\beta$ events selected between 0.5-4.8 MeV

 $T_{1/2}(2\nu) = [2.38 \pm 0.02(stat) \pm 0.14(syst)].10^{21} \text{ yr}$

arXiv:1201.4664 (April 2012) Gando *et al.,* PRC **85**, 045504, 2012

\rightarrow consistent with the EXO-200 result

KamLAND-Zen: limit for 0vββ half-life

- Unexpected peak at 2.6 MeV
- Rate stable in time: non short-lived radioisotope
- Non-compatible with ¹³⁶Xe Q_{BB}
- Check 'all' nuclei and decay paths
- Remaining candidates: ^{110m}Ag, ²⁰⁸Bi,
 ⁸⁸Y and ⁶⁰Co (some of them may come from the Fukushima fallouts)

$$T_{1/2}(0v) > 6.2 \times 10^{24} \text{ yr} (90\% \text{ C.L.})$$

arXiv:1201.4664 (April 2012) Gando *et al.,* PRC **85**, 045504, 2012

```
<m<sub>BB</sub>> < 0.3-0.6 eV
```

Summary of recent results

S.R.Elliott, arXiv: 1203.1070v1 (March 2012)

Table 1. A list of recent $0\nu\beta\beta$ experiments and their 90% confidence level (except as noted) limits on $T_{1/2}^{0\nu}$. The $\langle m_{\beta\beta} \rangle$ limits are those quoted by the authors using the $M_{0\nu}$ of their choice.

Isotope	Technique	$T^{0\nu}_{1/2}$	$\langle m_{\beta\beta} \rangle ~({\rm eV})$	Reference
^{48}Ca	CaF ₂ scint. crystals	$> 1.4 \times 10^{22} \text{ y}$	<7.2-44.7	14
76 Ge	^{enr} Ge det.	$> 1.9 \times 10^{25}$ y	< 0.35	15
76 Ge	enrGe det.	$(1.19^{+2.99}_{-0.50}) \times 10^{25} \text{ y} (3\sigma)$	0.24-0.58	16
$^{76}\mathrm{Ge}$	enrGe det.	$> 1.57 \times 10^{25}$ y	<(0.33-1.35)	17
^{82}Se	Thin metal foils and tracking	$> 3.6 \times 10^{23} \text{ y}$	<(0.89-2.54)	18
⁹⁶ Zr	Thin metal foils and tracking	$> 9.2 \times 10^{21} \text{ y}$	<(7.2-19.5)	19
¹⁰⁰ Mo	Thin metal foils and tracking	$> 1.1 \times 10^{24} \text{ y}$	<(0.45-0.93)	18
¹¹⁶ Cd	¹¹⁶ CdWO ₄ scint. crystals	$> 1.7 \times 10^{23} \text{ y}$	<1.7	20
128 Te	geochemical	$> 7.7 \times 10^{24} \text{ y}$	<(1.1-1.5)	21
¹³⁰ Te	TeO_2 bolometers	$> 2.8 \times 10^{24} \text{ y}$	<(0.3-0.7)	22
¹³⁶ Xe	Xe disolved in liq. scint.	$> 5.7 imes 10^{24} ext{ y}$	<(0.3-0.6)	23
¹⁵⁰ Ne	Thin metal foil within TPC	$> 1.8 imes 10^{22}$ y	N.A.	24

Goal of the next generation of experiment

Future experiments

Experiment	Isotope	Mass	Technique	Present Status	Location
AMoRE ⁸⁹⁹⁰	¹⁰⁰ Mo	50 kg	CaMoO ₄ scint. bolometer crystals	Development	Yangyang
CANDLES ⁹¹	^{48}Ca	0.35 kg	CaF ₂ scint. crystals	Prototype	Kamioka
CARVEL ⁹²	^{48}Ca	1 ton	CaF_2 scint. crystals	Development	Solotvina
COBRA ⁹³	^{116}Cd	183 kg	^{enr} Cd CZT semicond. det.	Prototype	Gran Sasso
CUORE-069	$^{130}\mathrm{Te}$	11 kg	TeO ₂ bolometers	Construction - 2012	Gran Sasso
CUORE ⁶⁹	130 Te	203 kg	TeO ₂ bolometers	Construction - 2013	Gran Sasso
DCBA ⁹⁴	150 Ne	20 kg	^{enr} Nd foils and tracking	Development	Kamioka
EXO-20057	136 Xe	160 kg	Liq. enrXe TPC/scint.	Operating - 2011	WIPP
EXO ⁷⁰	136 Xe	1-10 t	Liq. ^{enr} Xe TPC/scint.	Proposal	SURF
GERDA ⁷¹	$^{76}\mathrm{Ge}$	$\approx 35 \text{ kg}$	enrGe semicond. det.	Operating - 2011	Gran Sasso
GSO ⁹⁵	$^{160}\mathrm{Gd}$	2 ton	Gd ₂ SiO ₅ :Ce crys. scint. in liq. scint.	Development	
KamLAND-Zen ⁹⁶	136 Xe	400 kg	^{enr} Xe disolved in liq. scint.	Operating - 2011	Kamioka
LUCIFER ^{97 98}	^{82}Se	18 kg	ZnSe scint. bolometer crystals	Development	Gran Sasso
MAJORANA ⁷⁷⁷⁸⁷⁹	76 Ge	26 kg	enrGe semicond. det.	Construction - 2013	SURF
MOON 99	100 Mo	1 t	^{enr} Mofoils/scint.	Development	
SuperNEMO-Dem ⁸⁷	^{82}Se	7 kg	^{enr} Se foils/tracking	Construction - 2014	Fréjus
SuperNEMO ⁸⁷	^{82}Se	100 kg	^{enr} Se foils/tracking	Proposal - 2019	Fréjus
NEXT 82 83	136 Xe	100 kg	gas TPC	Development - 2014	Canfranc
SNO+8485	$^{150}\mathrm{Nd}$	55 kg	Nd loaded liq. scint.	Construction - 2013	SNOLab

Table 2. A summary list of the $0\nu\beta\beta$ proposals and experiments.

Summary and outlook

- Running experiments are using various $\beta\beta$ isotopes (⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹³⁰Te, ¹³⁶Xe...) with typical sensitivity T_{1/2}>10²⁴-10²⁵ y, i.e. <m_{$\beta\beta$}> < 0.15-0.5 eV
- Claim of the Heidelberg-Moscow experiment in 2004 (<m_{\beta\beta}> = 0.24-0.59 eV) will be tested in 2013-2015
- Next generations of experiment need to use at least 100kg of enriched isotope (started with Xe experiments) with also background improvements
- Goal: to test the inverted hierarchy mass region with $< m_{\beta\beta} > < 0.02-0.08 \text{ eV} (T_{1/2} > 10^{26}-10^{27} \text{ y})$
- Nuclear Matrix Elements: crucial to reach the right effective neutrino mass and the Shell Model is very predictive for several 0vββ candidates (except the very interesting ¹⁵⁰Nd...)