

Astronomy Neutrino Telescope with Abyss environmental RESearch http://antares.in2p3.fr

Antoine Kouchner Université Paris 7 – APC 11 avril 2008

Le télescope à neutrinos

Antarès

Plan de l'exposé

Astronomie neutrino

Motivations scientifiques Sources de neutrinos

Les télescopes à neutrinos

Principes de détection Les télescopes actuels

Le télescope Antares

Le détecteur Les performances attendues Etapes de la construction Analyses en cours

Le projet KM3NeT

Plan de l'exposé

Astronomie neutrino

Motivations scientifiques Sources de neutrinos

Les télescopes à neutrinos

Principes de détection Les télescopes actuels

Le télescope Antares

Le détecteur Les performances attendues Etapes de la construction Analyses en cours

Le projet KM3NeT

Motivations scientifiques

Premiers neutrinos extraterrestres

Neutrinos issus de la Le soleil vu par supernova 1987A (MeV) l'expérience ~MeV SuperKamiokand

Premiers neutrinos extraterrestres

Présence de v cosmiques E > GeV? Galactiques Extragalactiques

Le soleil vu par l'expérience SuperKamiokande

 V_{μ}

~MeV

Neutrinos issus de la supernova 1987A (MeV)

(c) Jouvenot Fabrice

photon-photon pair production

(c) Jouvenot Fabri

Neutrino

Sensible aux variations temporelles Distances cosmologiques Cœur des sources Sources ponctuelles

Vu

• Mêmes processus (cascades) que les gerbes atmosphériques

- Les γ de HE peuvent venir de processus électromagnétiques Synchrotron Inverse Compton
- Accélération des primaires («Bottom-Up») Chocs stochastiques (mécanismes de Fermi) Explosion violente

Accrétion / effondrement gravitationnel

Modèles sans accélération («Top-down»)

Désintégration de particules supermassives héritées du Big-Bang

• Mêmes processus (cascades) que les gerbes atmosphériques

- Les γ de HE peuvent venir de processus électromagnétiques Synchrotron Inverse Compton
- Accélération des primaires («Bottom-Up»)
 Chocs stochastiques (mécanismes de Fermi)
 - Explosion violente Accrétion / effondrement gravita

 V_{μ}

- Accrétion / effondrement gravitationnel
- Modèles sans accélération («Top-down»)
 synchrotron radiation
 Désintégration de particules supermassives héritées du Big-Bang

inverse Compton scattering

magnetic field

• Mêmes processus (cascades) que les gerbes atmosphériques

- Les γ de HE peuvent venir de processus électromagnétiques Synchrotron Inverse Compton
- Accélération des primaires («Bottom-Up») Chocs stochastiques (mécanismes de Fermi) Explosion violente

Accrétion / effondrement gravitationnel

Modèles sans accélération («Top-down»)

Désintégration de particules supermassives héritées du Big-Bang

• Mêmes processus (cascades) que les gerbes atmosphériques

- Les γ de HE peuvent venir de processus électromagnétiques Synchrotron Inverse Compton
- Accélération des primaires («Bottom-Up») Chocs stochastiques (mécanismes de Fermi) Explosion violente Accrétion / effondrement gravitationnel
 Modèles sans accélération («Top-down») Désintégration de particules supermassives héritées du Big-Bang

Hadronique versus leptonique (SIC)

- Champ : 6 µG
- e⁻/p accélérés : 9. 10⁻³
- Densité : 0,08 part.cm⁻³
- Interactions CMB seul

Modèle hydrodynamique RXJ 1713 G. Maurin et al.,

Hadronique versus leptonique (SIC)

Hypothèses :

- Champ : 12 µG
- e-/p accélérés : 5. 10-4
- Densité : 1,5 part.cm⁻³
- Interactions CMB seul

(c) Jouvenot Fabr

Les rayons cosmiques de HE

c) Jouvenot Fabric

 v_{μ}

Les rayons cosmiques de HE

 V_{μ}

La coupure à UHE est confirmée mais ...

Nature Origine Production

Noyaux actifs de galaxie (AGN)

Sources variables mais continues

Luminosités observées 10⁹ - 10¹⁵×L_☉

 V_{u}

AUGER : corrélation AGN

• 21 événements E>57EeV

 \mathcal{V}_{μ}

• dont 19 à 3.2^o d' AGN de redshift z < 0.018 (75 Mpc)

Sursauts gamma (GRB)

Émissions très courtes (~1s) et très intenses ~ $10^{18} \times L_{\odot}$) Émission en 1 s E $_{\odot}$ en... 300 000 000 000 années !

- Découverte fortuite émission prompte en 1967 par VELA, publiée en 1973
- Observation satellite C.G.R.O (EGRET, BATSE, Beppo-SAX,...) de 1991 à 2000
- Origine extragalactique

Vu

distribution spatiale isotrope + contreparties $z \Rightarrow \in [0.43; 4.50]$)

Sursauts gamma (GRB)

Émissions très courtes (~1s) et très intenses ~ $10^{18}\times L_{\odot}$) Émission en 1 s E $_{\odot}$ en... 300 000 000 000 années ! BATSE : 1 sursaut /jour ($4\pi/3 sr$)

- Découverte fortuite émission prompte en 1967 par VELA, publiée en 1973
- Observation satellite C.G.R.O (EGRET, BATSE, Beppo-SAX,...) de 1991 à 2000
- Origine extragalactique

Vu

distribution spatiale isotrope + contreparties $z \Rightarrow \in [0.43; 4.50]$)

Sursauts gamma (GRB)

Émissions très courtes (~1s) et très intenses ~ $10^{18}\times L_{\odot}$) Émission en 1 s E $_{\odot}$ en... 300 000 000 000 années !

Différents modèles d'émission WB, MPR, Guetta et al. 0.5 – 10 neutrinos / an

BATSE : 1 sursaut /jour ($4\pi/3 sr$)

- Découverte fortuite émission prompte en 1967 par VELA, publiée en 1973
- Observation satellite C.G.R.O (EGRET, BATSE, Beppo-SAX,...) de 1991 à 2000
- Origine extragalactique

 V_{u}

distribution spatiale isotrope + contreparties $z \Rightarrow \in [0.43; 4.50]$)

Trigger spécial développé pour ANTARES

Limites théoriques supérieures (v

> Waxman & Bahcall, 1999

- dN/dE \propto E⁻² spectre primaire
- Normalisation avec le spectre de RC observé entre 10¹⁹ -10²⁰ eV

E⁻² I(E) = 4.5 10⁻⁸ GeV cm⁻² s⁻¹ sr⁻¹

Mannheim, Protheroe, Rachen, 2001

• Spectre des primaires libre

- Normalisation à la contribution extragalactique du spectre des RC
- Considèrent aussi les sources opaques aux neutrons

Limites théoriques supérieures (v

> Waxman & Bahcall, 1999

- dN/dE ∝E⁻² spectre primaire
- Normalisation avec le spectre de RC observé entre 10¹⁹ -10²⁰ eV

E⁻² I(E) = 4.5 10⁻⁸ GeV cm⁻² s⁻¹ sr⁻¹

Mannheim, Protheroe, Rachen, 2001

- Spectre des primaires libre
- Normalisation à la contribution extragalactique du spectre des RC
- Considèrent aussi les sources opaques aux neutrons

 « High Energy Neutrinos from
 Astrophysical Sources: An Upper Bound » PRD 59 (1999)
 « On the Cosmic Ray Bound for models of
 Extragalactic Neutrino production » PRD 63 (2001)
 « High Energy Astrophysical Neutrinos:
 The Upper Bound is Robust » PRD 64 (2001)

« The relation of extragalactic cosmic rays and neutrino fluxes: the logic of the upper

bound debate »

Astro-ph/990831

Limites théoriques supérieures (v

> Waxman & Bahcall, 1999

- dN/dE ∝E⁻² spectre primaire
- Normalisation avec le spectre de RC observé entre 10¹⁹ -10²⁰ eV

E⁻² I(E) = 4.5 10⁻⁸ GeV cm⁻² s⁻¹ sr⁻¹

Mannheim, Protheroe, Rachen, 2001

• Spectre des primaires libre

 V_{μ}

- Normalisation à la contribution extragalactique du spectre des RC
- Considèrent aussi les sources opaques aux neutrons

 « High Energy Neutrinos from
 Astrophysical Sources: An Upper Bound » PRD 59 (1999)
 « On the Cosmic Ray Bound for models of Extragalactic Neutrino production » PRD 63 (2001)
 « High Energy Astrophysical Neutrinos: The Upper Bound is Robust »

PRD 64 (2001)

« The relation of extragalactic cosmic rays and neutrino fluxes: the logic of the upper

bound debate »

Astro-ph/990831

⇒ Limites controversées

Binaires Micro-quasars

(c) Jouvenot Fabri

 V_{u}

Vestiges de supernovae pulsars, étoiles à neutrons

Vu

Structures denses Soleil, centre galactique, matière interstellaire

Région centrale de la Galaxie

Haute densité de matière Source compacte Sgr A[★] Trou Noir ~3 10⁶ M_☉ Sgr A East SNR

HESS

Emission photons TeV versus densité de nuages moléculaires

→ champs de vue des télescopes à neutrinos de l'hémisphère nord

 V_{u}

Plan de l'exposé

Astronomie neutrino

Motivations scientifiques Sources de neutrinos

Les télescopes à neutrinos

Principes de détection Les télescopes actuels

Le télescope Antares

Le détecteur Les performances attendues Etapes de la construction Analyses en cours

Le projet KM3NeT

Plan de l'exposé

Astronomie neutrino

Motivations scientifiques Sources de neutrinos

Les télescopes à neutrinos

Principes de détection Les télescopes actuels

Le télescope Antares

Le détecteur Les performances attendues Etapes de la construction Analyses en cours

Le projet KM3NeT
Défi de la détection à haute énergie

 V_{μ}

(c) Jouvenot Fabrice

Défi de la détection à haute énergie

 V_{μ}

c) Jouvenot Fabrice

Défi de la détection à haute énergie

 $\mathcal{V}_{\!\mu}$

Atmosphère Mer

 $\mathcal{V}_{\!\mu}$

Atmosphère Mer

 $\mathcal{V}_{\!\mu}$

Atmosphère Mer ρ, α

 $\mathcal{V}_{\!\mu}$

Atmosphère Mer ρ, α

μ atmosphériques 10⁷ par an

ρ, α

Atmosphère Mer

v cosmiques 0 à 100 par an !

 \mathcal{V}_{μ}

v atmosphériques 10⁴ par an

μ atmosphériques 10⁷ par an

ρ, α

Atmosphère Mer

v cosmiques 0 à 100 par an !

 ⇒ Détecteur blindé Souterrain ou <u>sous-marin</u>
 ⇒ Signal neutrino = muons montants

 V_{μ}

v atmosphériques 10⁴ par an

 V_{μ}

ANTARES va d'abord détecter les v atmosphériques. Excès à haute énergie \Rightarrow Neutrinos cosmiques

Idée de Markov (1960) :

Détecter les m issus de v_{μ} + N $\longrightarrow \mu$ + X

Tirer avantage du parcours R_u du muon

 V_{u}

Idée de Markov (1960) :

u

Détecter les m issus de v_{μ} + N $\longrightarrow \mu$ + X

Tirer avantage du parcours R_{μ} du muon

Idée de Markov (1960) :

 V_{μ}

Détecter les m issus de v_{μ} + N $\longrightarrow \mu$ + X

Tirer avantage du parcours $R_{\!_{\mu}}$ du muon

Idée de Markov (1960) :

u

Détecter les m issus de v_{μ} + N $\longrightarrow \mu$ + X

Tirer avantage du parcours R_{μ} du muon

 V_{μ}

Tirer avantage du parcours R_{μ} du muon

Idée de Markov (1960) :

u

Détecter les m issus de v_{μ} + N $\longrightarrow \mu$ + X

Tirer avantage du parcours R_{μ} du muon

 V_{u}

Volume effectif de détection augmente avec E_v

 V_{μ}

Volume effectif de détection augmente avec E_v

 V_{u}

Volume effectif de détection augmente avec E_v La déviation entre le v et le μ diminue avec E_v

 V_{u}

Volume effectif de détection augmente avec E_v La déviation entre le v et le μ diminue avec E_v Section efficace d'interaction augmente avec E_v

Volume effectif de détection augmente avec E_v La déviation entre le v et le μ diminue avec E_v Section efficace d'interaction augmente avec E_v

La détection des neutrinos muoniques de HE est favorisée

Surface effective – taux de détection

A_{eff,v} [m²] 10 1 10⁻¹ =_= 10⁻² ⊒₩∈ 10⁻³ ∃Æ Neutrino Nadir Angle **10**⁻⁴ All angles 0°- 30° 30°- 60° 60°- 90° 10⁻⁵ 10⁻⁶ 10⁻⁷ 10⁻⁸ 10⁻⁹ 5 2 3 6 Log₁₀(E_v[GeV])

La Terre devient opaque au PeV

Neutrino Effective Area

Surface effective – taux de détection

Neutrino Effective Area

 V_{μ}

(c) Jouvenot Fabrice

La Terre devient opaque au PeV

Surface effective – taux de détection

Neutrino Effective Area A_{eff,v} [m²] 10 $10^{-2} E(TeV)$ EeV 10⁻¹ PeV 10⁻² 10^{-3} = Neutrino Nadir Angle 10⁻⁴ All angles 0°- 30° 30°- 60° 60°- 90° **10**⁻⁵ 10⁻⁶ 10⁻⁷ 10⁻⁸ 10⁻⁹ 5 3 6 Log₁₀(E_v[GeV]) $N = 2\pi \times \Delta t \times \int_{1TeV}^{1PeV} \frac{dN}{dE} A_{eff,v}(E) dE \times \frac{1}{2}$

 V_{μ}

DETECTEUR

La Terre devient opaque au PeV

oscillations

50'

WB: $\frac{dN}{dE} = \frac{4.5 \times 10^{-11}}{E^2} TeV^{-1} cm^{-2} s^{-1} sr^{-1}$ N ~ 3 / an

Les télescopes à neutrinos

{ANTARES, NEMO, NESTOR} ∈Consortium KM3NeT

BAIKAL **ANTARES** Lac Baikal, Sibérie La-Seyne-sur-Mer, France **NEMO AMANDA**, / IceCube **Nestor** South Pole, Antarctique Pylos, Grèce

Catane, Italie

Les atouts de la mer Méditerranée

- Couverture céleste complémentaire (/PS)
 - Centre galactique
- Grandes profondeurs jusqu'à 5000m
- Infrastructures proches de la côte
 - Logistique accessible

 V_{u}

- Récupération et redéploiement possibles Ciel visible en Méditerranée
- Peu de diffusion de la lumière
 - Bonne précision angulaire

Choix du site d'immersion

Profondeur \rightarrow Réduction bruit de fond atmosphérique (μ)

Longueur absorption Longueur diffusion

			1
[λ ~ 460 nm] (bleu)	Longueur d' absorption (m)	Longueur de diffusion effective (m)	Résolution Angulaire(°) (< 0.1km ^{2,} E>10 TeV)
Pôle Sud	≤ 100	≤ 25	3 °
Lac Baikal	≥ 15	> 300	1.5°
Méditerranée	55	> 300	0.2 °
vité optique		[seulement dans l'eau	

Activité optique mer]

- organismes marins
- désintégration radioactive ⁴⁰K

ment dans l'eau de

filtre de causalité nécessaire 99 % signaux = bruit de fond

Vu

Bruit de fond optique

Ligne de base

Bio-luminescence

Sursauts de bio-luminescence:

Espèces animales photo-émettrices

V

Ligne de base

Bio-luminescence

Sursauts de bio-luminescence:

Espèces animales photo-émettrices

V

Plan de l'exposé

Astronomie neutrino

Motivations scientifiques Sources de neutrinos

Les télescopes à neutrinos

Principes de détection Les télescopes actuels

Le télescope Antares

Le détecteur Les performances attendues Etapes de la construction Analyses en cours

Le projet KM3NeT

Plan de l'exposé

Astronomie neutrino

Motivations scientifiques Sources de neutrinos

Les télescopes à neutrinos

Principes de détection Les télescopes actuels

Le télescope Antares

Le détecteur Les performances attendues Etapes de la construction Analyses en cours

Le projet KM3NeT

La collaboration Antares

 \mathcal{V}_{μ}

Le site ANTARES

Le télescope Antares

• 25 étages / ligne
• 3 PMs / étage
• 900 PMs

350 m

100 m

 V_{μ}

Profondeur 2475 m

~60-75 m

Temps O(ns), position O(10 cm), amplitude O(30%)des signaux de PM \Rightarrow trajectoire du muon

m

Ancre

40 km

Boîte de jonction

Câbles sous-marins
Le télescope Antares

Un étage de détection

 Module optique:

 10" Hamamatsu PM

 Photon-détection

 Image: NIM A484 (2002) 369

 Image: NIM A555 (2005) 132

Positionnement acoustique

Acquisition des signaux

L0: PSD ~ 1/3 photo-électron

L1: Coïncidences locales (1 étage) si taux >200kHz possibles

L2: Coïncidences entre étages \rightarrow pas nécessaire tant que <1Gb/s/ligne

L3: Filtrage en temps à terre (ferme de PC)

Acquisition des signaux

L0: PSD ~ 1/3 photo-électron

L1: Coïncidences locales (1 étage) si taux >200kHz possibles

L2: Coïncidences entre étages \rightarrow pas nécessaire tant que <1Gb/s/ligne

L3: Filtrage en temps à terre (ferme de PC)

 V_{u}

Performances attendues

Flux diffus

 V_{u}

Sensibilité aux sources ponctuelles

Oct. 2001 Déploiement du câble principal

Dec. 2002 Boîte de jonction

Dec. 2002 Boîte de jonction

 \rightarrow 2006 : déploiement de plusieurs prototypes, résolution de pbs techniques

 $\mathcal{V}_{\!\mu}$

0

14 février 2006 : La ligne n°

14 février 2006 : La ligne n°1

14 février 2006 : La ligne n°1

Connexion : 2 mars 2006

- 2006: Ligne 1 (Mars) Ligne 2 (Octobre)
- 2007: Lignes 3,4,5 (Mars) Lignes 6,7,8,9,10 +IL (Décembre)

Vu

Détecteur final (12 +1IL lignes) été 2008

📖 NIM A 570 107-116 2007

off-shore

on-shore

off-shore

on-shore

Antares sur le réseau d'alerte

 V_{u}

Antares sur le réseau d'alerte

c) Jouvenot Fabrice

Système de positionnement <10 cm

Système de positionnement <10 cm

Etalonnage temporel : LED

 \mathcal{V}_{μ}

(c) Jouvenot Fabrice

Etalonnage temporel : LED

 V_{μ}

c) Jouvenot Fabrice

Etalonnage temporel : LED

0

1

2 3

5

6

4

Measurement

78

2

3

4

Measurement

5 6

0

7 8

Coïncidences dues au 40

Données :

Taux de coïncidence (fit gaussien) 13.4 Hz en moyenne 20% dispersion

Simulation :

Contribution ⁴⁰K constante de 40 kHz 12 Hz ± 4 Hz (sys)

Efficacité des PM au cours du temps

 V_{u}

Muons: ΔT entre deux étages

Etude des systématiques (µ)

 V_{u}
Événements à 5 lignes

Taux de filtrage ~1 Hz (5 lines)

19×10⁶ μ detectés à 5 lignes

Muon atmosphérique

Reconstruction à 1 ligne (peu sensible à l'azimuth):

Minimisation $\chi 2$ pour estimer l'angle zénithal

Multi-muons à 5 lignes ?

 V_{u}

Etudes en cours pour distinguer ces topologies

Gerbe de multi-muon (MC

Dominant après filtrage (trigger)

Ex: Gerbe de multi-muons descendante à θ = 120° Distances à la ligne 20m, 5m, 20m, 3m (black,red,green,blue)

 V_{u}

Candidat neutrino atmosphérique

V

On-line event display

http://www.nikhef.nl/~sottoriv/display/

(c) Jouvenot Fabrice

Comparaison MC-Données (Nadir)

Comparaison MC-Données (Nad

Gerbes électromagnétiques

Emission du muon :

- Lumière Tcherenkov continue
- Gerbes électromagnétiques discrètes (quasi-ponctuelles)

Transformation le long de la trajectoire du muon, nettoyage des hits \Rightarrow Pic indique la position de la

gerbe

Gerbes électromagnétiques

Exemple avec résultat d'une reconstruction de la gerbe à 3D

Pic = Position de la gerbe le long de la trajectoire du muob

V

Gerbes électromagnétiques

Plan de l'exposé

Astronomie neutrino

Motivations scientifiques Sources de neutrinos

Les télescopes à neutrinos

Principes de détection Les télescopes actuels Quelques résultats

Le télescope Antares

Le détecteur Les performances attendues Etapes de la construction Analyses en cours

Le projet KM3NeT

Plan de l'exposé

Astronomie neutrino

Motivations scientifiques Sources de neutrinos

Les télescopes à neutrinos

Principes de détection Les télescopes actuels Quelques résultats

Le télescope Antares

Le détecteur Les performances attendues Etapes de la construction Analyses en cours

Le projet KM3NeT

Calendrier

 V_{u}

FP6 design study

WP2 : physique et analyse

Différentes géométries sont à l'étude – Optimisation du détecteur 1 TeV- 1 PeV

Clus			
00 000 00	00 000 00		
00 000 00			
00 000 00			

Choix du site.

Site choice will depend on:

- Depth
- Distance from shore
- Bioluminescence rate
- Sedimentation
- facilities

- Biofouling
- Sea currents
- Earth quake profile
- Access to on-shore

 V_{u}

Choix des modules optiques

Réduction du nombre de connecteurs par surface de détection

Segmentation of photo cathode of 10" PMT

Multi PMTs in one glass sphere

 V_{u}

Technique de déploiement

Les sciences associées

KM3NeT observatoire multidisciplinaire : Oceanologie Bilogie marine Climatologie Géologie et géophysique

KM3NeT, un site relais pour

- **ESONET** (European Sea-floor Observatory NETwork): strategic long term monitoring capability in geophysics, geo-technics, chemistry, biochemistry, oceanography, biology and fisheries.
- **<u>EMSO</u>** (European Multi-disciplinary Sea-floor Observatory research infrastructure): management and conservation of marine resources, geo-hazards and climate change in the deep-sea

Conclusions

 \mathcal{V}_{μ}

- Démonstration de la faisabilité d'un détecteur à v sous-marin
- ANTARES est le plus grand TN de l'hémisphère nord...
- > 10 lignes en fonctionnement
- > Une plateforme pour les sciences associées
- Premiers neutrinos sous-marins observés
- Détecteur final 12 lignes début 2008 :
 Exploitation scientifique ≥ 5 ans

Etape majeure vers un détecteur KM³ méditerranéen