The neutron EDM project at PSI

Dominique Rebreyend (LPSC Grenoble) for the nEDM-PSI collaboration

Outline

Physics motivations
Experimental technique
Our approach
Some current R&D activities
The PSI UCN source

Best upper limit: the RAL-Sussex experiment at ILL

A minute quantity...

nEDM and symmetries

CP violation in SM

Electroweak sector:

- CP violation first observed in K₀ decays (1964) and recently in B mesons decays (BABAR at SLAC, BELLE at KEK B).
- All these CP-odd processes can be interpreted by the introduction of a single phase δ in the CKM matrix.
- Because of a single phase and no net flavour change, all first-order contributions cancel in the nEDM.

■ Puzzle with no real satisfactory solution so far → strong CP problem

Can we explain the disappearance of anti-matter?

Sakharov's answer (1967): yes if
Off-equilibrium process
Baryon number non-conservation *CP-odd mechanism*

Baryon asymmetry of the Universe: BA^{obs.}: $3 \ 10^{-11} < n_B/n_\gamma < 6 \ 10^{-8}$ BA^{SM~} 10^{-17}

CP violation in extensions of SM

 CP-odd phases appear quite generically in extensions of SM, like supersymmetric models.

 \blacktriangleright \rightarrow "Natural" predictions of SUSY models:

$$d_n \sim 10^{-23} - 10^{-24} e \text{ cm}$$

The current limit on the neutron EDM already provides stringent constraints on SUSY parameters !

$$\rightarrow$$
 SUSY CP problem !

Experimental technique

Search for electric-field induced changes of the Larmor precession frequency of stored Ultra Cold Neutron (UCN).

The Ultra Cold Neutrons (UCN)

Typical UCN numbers

- E ~ 100 neV (δ z ~ 1 m)
- V ~ 5 m/s
- T ~ mK
- λ ~ 1000 Å

UCN interact with matter via an effective Fermi potential (V_F= 90 neV for quartz, 270 neV for DLC)

 \rightarrow Can be stored in vessels!

•UCN sources:

- PF2@ILL (the best to date) $: \rho \sim 10 \text{ UCN/cm}^3$ (Fission)
- UCN@PSI (2009 \rightarrow) : $\rho \sim 10^3$ UCN/cm³ (Spallation)
- + other projets (Munich, Japan...)

Simulation GEANT4-UCN

The Ramsey method of separated oscillatory fields

Statistical error

$$\delta d_n = rac{h}{4\pilpha} \cdot rac{1}{T \cdot E \cdot \sqrt{N_0}}$$

- $\boldsymbol{\alpha}$: visibility (polarization product)
- E : E-field strength
- T : storage time
- N₀ : number of detected neutrons

RAL-Sussex-ILL experiment:

 α \approx 0.7, E \approx 10 kV/cm, T=130 s, N \approx 14,000 UCN/cycle

 $\delta d_n \approx 3 \times 10^{-24} e \text{ cm /cycle or}$ $\approx 2 \times 10^{-25} e \text{ cm /day}$

d_n = (+ 0.2 ± 1.5 (stat) ± 0.7 (syst)) x 10⁻²⁶ e cm (PRL 97(2006)131801)

The RAL-Sussex spectrometer

at []

The Hg co-magnetometer

Our approach

Sensitivity goal : 5x10⁻²⁸ e cm (SM prediction: d_n 10⁻³¹ e cm)

In vacuum technique with external UCN source

- Room temperature (CRYO-EDM at ILL and SNS-EDM at ORNL are cryogenic)
- Magnetometry:
 - Hg co-magnetometer (R&D on ¹²⁹Xe and ³He)
 - ³He (sensitivity- 1 fT during 200s cycle)
 - External Cs magnetometers for monitoring/stabilization of the field and read-out of ³He precession.

The roadmap

Phase I (2005-2008)

- Operation and improvement of the RAL-Sussex spectrometer at ILL
- R&D on magnetometry, materials, shield calculations, UCN detection...
- Design of a new spectrometer
- Phase II (2009-2010)
 - Data taking with upgraded version of RAL-Sussex apparatus at PSI
 - \rightarrow sensitivity of 5x10⁻²⁷ e cm
 - Construction of the new spectrometer
- Phase III (2011-2015)
 - Data taking with the new spectrometer
 - \rightarrow sensitivity of 5x10⁻²⁸ e cm

Conceptual design of the future spectrometer

The double chamber arrangement

Simultaneous measurement with n/Hg/Cs

Ratio of n/Hg precession frequencies:

$$R = v_n / v_{Hg} = (\gamma_n / \gamma_{Hg}) (1 + G \Delta h / B)$$

• G = vertical gradient (← Cs magnetometers)

• Δh = distance between n and Hg center-of-gravity (estimated via simulation)

New Cs magnetometer prototype

 \rightarrow Allows a much larger number of magnetometers

DPS coated ring

Materials:

- Rexolite (cross-linked polystyrene) ring
- Deuterated PS solved in d-toluene
- Fermi potential: 162 ± 10 neV

Recent tests at ILL

~30% gain in number of UCNs after 150 sec storage time

UCN Storage time vs coating (simulation at the PSI source)

OILL in UCN south area at PSI

The Neutron EDM Collaboration

M. Burghoff, S. Knappe-Grueneberg, T. Sander-Thoemmes, A. Schnabel, L. Trahms *PTB, Berlin, Germany*

> G. Ban, Th. Lefort, O. Naviliat-Cuncic LPC, Caen, France

K. Bodek, St. Kistryn, M. Kuzniak², J. Zejma Jagiellonian University, **Cracow**, Poland

> N. Khomutov JINR, **Dubna,** Russia

P. Knowles, A. Weis Université de Fribourg, **Fribourg**, Switzerland

> G. Rogel¹ ILL, Grenoble, France

G. Quéméner, <u>D. Rebreyend</u>, S. Roccia *LPSC*, *Grenoble*, *France*

> N. Severijns Catholic University, Leuven, Belgium

G. Hampel, W. Heil, J.V. Kratz, T. Lauer, C. Plonka-Spehr, Y. Sobolev, N. Wiehl Johannes-Gutenberg-Universität, Mainz, Germany

> I. Altarev, P. Fierlinger, E. Gutsmiedl, S. Paul, R. Stoepler *TUM*, *Münich*, *Germany*

M. Daum, R. Henneck, S. Heule³, M. Kasprzak⁴, <u>K. Kirch</u>, A. Knecht³, A. Mchedlishvili, A. Pichlmaier, G. Zsigmond *Paul Scherrer Institut, Villigen, Switzerland*

also at: ¹LPC Caen, ²Paul Scherrer Institut, ³University of Zürich, ⁴SMI Vienna

