

Clock Distribution and Array Trigger With MUTIN card; Some Architecture Options

1

Introduction (philosophy)

For the stereoscopic triggering of the telescopes in CTA,

we favour an approach based on :

- Distribution of a high-precision clock from a central location (star-distribution)
- Time-tagging camera events (or partial events) using this clock
- Collecting streams of time-tags in a central trigger crate and checking for coincidence in software
- Then sending the streams of coinc. time-tags *either* (depending on bottleneck):
 - to the relevant cameras, to ask for the data to be sent to central, so reducing the stream of data to send over ethernet from telescope to central farm, or
 - to the central farm of processors which hold the events in memory, to identify the events to be written to disk and passed on for further processing

Other approaches possible:

- Sending of trigger pulses to central station to be put into time and checked for coinc.
 Complicated for large # of telescopes, difficult to avoid large dead-time
- All data to central, software search within data to extract time-tags & check for coincidences. Requires high processing capability and much bookkeeping (and needs clock-distribution in any case).

erenkov telescope array

18/6/2012

Introduction (philosophy)

For the stereoscopic triggering of the telescopes in CTA, approach based on :

- Distribution of a high-precision clock from a central location (star-distribution)
- Time-tagging camera events (or partial events) using this clock
- Collecting streams of time-tags in a central trigger crate and checking for coincidence in software
- Then sending the streams of coinc. time-tags *either* (depending on bottleneck):
 - to the relevant cameras, to ask for the data to be sent to central, so reducing the stream of data to send over ethernet to central farm, or
 - to the central farm of processors which hold the events in memory, to identify the events to be written to disk and passed on for further processing

Distribution of reference clock and sync orders from central location by dedicated fibre

Send telescope time-tags stream by dedicated fibre to central, return stream of coincident event time-tags to each telescope

Ambitious option for Camera Architecture

Ambitious option for Camera Architecture

Previous slides with three possible architectures (note, at that time the datation was not integrated in the MUTIN)

⇒ Have to update these slides of the architecture to reflect "new" options (camera server on the ground)

The interface view from the Camera: Option "Full Camera"

The interface view from the Camera: Option "Camera-Free"

The interface view from the Camera: Option "Camera-Zero"

